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Abstract

This dissertation presents the development and evaluation of a Lagrangian stochastic

model of vertical dispersion of trace material in the convective boundary layer (CBL).

This model is based on a Langevin equation of motion for a fluid particle, and assumes

the fluid vertical velocity probability distribution is skewed and spatially homogeneous.

This approach can account for the effect of large-scale, long-lived turbulent structures

and skewed vertical velocity distributions found in the CBL. The form of the Langevin

equation used has a linear (in velocity) deterministic acceleration and a skewed random

acceleration. For the case of homogeneous fluid velocity statistics, this "linear-skewed"

Langevin equation can be integrated explicitly, resulting in a relatively efficient

numerical simulation method. It is shown that this approach is more efficient than an

alternative using a "nonlinear-Gaussian" Langevin equation (with a nonlinear

deterministic acceleration and a Gaussian random acceleration) assuming homogeneous

turbulence, and much more efficient than alternative approaches using Langevin equation

models assuming inhomogeneous turbulence. "Reflection" boundary conditions for

selecting a new velocity for a particle that encounters a boundary at the top or bottom of

the CBL were investigated. These include one method using the standard assumption that

the magnitudes of the particle incident and reflected velocities are positively correlated,

and two alternatives in which the magnitudes of these velocities are negatively correlated

and uncorrelated. The constraint that spatial and velocity distributions of a well-mixed

tracer must be the same as those of the fluid, was used to develop the Langevin equation

models and the reflection boundary conditions. The two Langevin equation models and

three reflection methods were successfully tested using cases for which exact, analytic

statistical properties of particle velocity and position are known, including well-mixed

spatial and velocity distributions. Simulations of laboratory experiments of CBL

dispersion show that both homogeneous Langevin equation models can simulate the

important aspects of dispersion in the CBL. The negatively-correlated-speed reflection

boundary condition simulates the observed dispersion of material in the CBL

significantly better than either of the other two reflection methods.
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Introduction

This dissertation presents the development and evaluation of a Langevin equation model

for numerically simulating vertical dispersion of material in the convective atmospheric

boundary layer. Dispersion models are important tools for assessing the health and

environmental impacts of air pollutants. Convective boundary layers are prevalent during

daytime, fair weather conditions over land, and are characterized by large turbulent

structures with size comparable to the depth of the boundary layer (typically, 200-2000

m). The turbulent properties of the convective boundary layer, or CBL, cause the vertical

dispersion of material to be dramatically different from that in other types of boundary

layers (e.g., stable, nighttime boundary layers or near-neutral boundary layers during

cloudy, strong-wind conditions). The Langevin equation for the motion of a fluid particle

provides a means to simulate the possible trajectories of particles in complex turbulent

flows, such as those found in the CBL, and to calculate the dispersion of trace material.

Dispersion of material in the CBL is dominated by large-scale, coherent turbulent

structures or eddies. Strong updrafts or thermals cover approximately 40% of the

horizontal area in the CBL, while compensating weaker downdrafts cover 60% of the

area. This results in a positively skewed vertical velocity distribution. Because of the

skewed vertical velocity, pollutant emitted into the CBL from an elevated, continuous

source, has a higher probability of being emitted into a downdraft. Due to the large-scale

coherent nature of the circulations, neutrally buoyant material emitted into a downdraft is

typically carried directly to the surface. The result is that the height of the maximum
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time-average concentration decreases with downwind distance. In contrast, material from

a near-surface source either enters an updraft immediately or travels horizontally near the

surface until it becomes incorporated in an updraft. After a short time, this results in a

dramatic increase in the height of the maximum concentration with downwind distance.

This behavior is not found in neutral or stable boundary layer turbulence which is

characterized by smaller turbulent structures and unskewed vertical velocity distributions.

For an elevated source, significant underprediction of ground-level pollutant

concentrations can occur if the unique properties of CBL turbulence are not taken into

account in dispersion models. CBL turbulence properties and dispersion phenomena will

be reviewed in Chapter 2.

Lagrangian stochastic models based on the Langevin equation provide a means to

determine the possible trajectories of fluid particles in a turbulent flow. The Langevin

equation of motion for a particle equates the net acceleration on a particle to the sum of a

deterministic acceleration and a random acceleration. Integration of the Langevin

equation in time provides a means of calculating the time evolution of the velocity of a

particle, and spatial trajectories. Using Monte Carlo simulations, ensemble-mean air

concentration can be estimated from many independent realizations of possible

trajectories of particles released at a source.

The Langevin equation modeling approach has been used successfully to simulate tracer

dispersion in complex turbulent flows which have large-scale structures, and

inhomogeneous and non-Gaussian turbulent properties (Wilson and Sawford, 1996).

Because a Langevin equation model simulates the correlation in time of a particle’s

velocity, it can be used to model dispersion at travel times less than (and greater than) the

Lagrangian velocity correlation time (typically 1 to 15 min in the CBL). This makes the
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Langevin equation a viable model for simulating dispersion at any time typically of

interest.

The Lagrangian stochastic approach using the Langevin equation has some significant

advantages, compared to other approaches. Lagrangian stochastic methods require only

information on the statistical properties of the velocity field. In contrast, Eulerian

approaches based on the Reynolds-averaged conservation of species equation require

information on the joint moments of velocity and concentration. Closure assumptions that

are needed to determine these joint moments depend on the concentration distribution,

and are not universally valid (Deardorff, 1978).

Unlike Langevin equation models, Eulerian or Lagrangian models based on the diffusion

equation (which use an eddy diffusivity to parameterize the diffusive properties of

turbulence) are only applicable for times much greater than Lagrangian correlation time,

τ, of the fluid velocity (e.g., Sawford, 1985). At these times, material from a point source

will already be diluted throughout the depth of the CBL. Therefore, the advection-

diffusion equation is not a valid approach to simulating dispersion of material in the CBL,

except for the initial diffusion of sources very near the surface where τ  becomes small.

Numerical methods based on the Lagrangian approach have advantages because they are

meshless. In contrast, Eulerian methods can suffer from numerical diffusion, may not

conserve mass, and may produce negative concentrations (Seinfeld, 1988). Lagrangian

methods can resolve point sources without additional computational cost or an

approximate sub-grid parameterization, unlike Eulerian methods or hybrid Eulerian-

Lagrangian, particle-in-cell methods (e.g., Lange, 1978). Unlike particle-in-cell methods,

the accuracy of an individual particle trajectory calculation using a Lagrangian stochastic

model is not dependent on grid resolution or the number of trajectories computed. In
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addition, first-order chemical reactions or radioactive decay can be handled simply in a

Lagrangian frame using functions of material age.

Simplified statistical models of vertical dispersion in the CBL (e.g., Weil, 1988) have

been fairly successful in simulating dispersion from elevated sources in the CBL by using

the skewness of vertical velocity at the source height and assuming a uniform horizontal

mean wind velocity, and an infinite Lagrangian time scale. A Langevin equation

approach, however, is not limited to these simplifying assumptions, and can be applied to

other turbulent flows.

Langevin equation models that attempt to resolve the inhomogeneous properties of the

vertical velocity fluctuations near the top and bottom of the CBL have been fairly

successful (e.g., Luhar and Britter, 1989; Weil, 1989), but have a practical limitation that

small numerical integration time steps are required for accurate solutions. It has been

recognized that simplified Langevin equation models that assume skewed but

homogeneous velocity statistics can capture the important aspects of dispersion from

sources in the CBL (Hurley and Physick, 1993), and can use significantly longer time

steps.

The use of longer numerical integration time steps makes dispersion models more

efficient, and more useful for practical applications. For example, dispersion model

predictions of air concentration patterns following accidental releases of hazardous

material need to be made in a timely manner. Efficiency is also important for applications

requiring a long numerical integration period (e.g., continental-scale dispersion from a

Chernobyl-type accident).
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The work presented in this dissertation further investigates the ability of homogeneous,

skewed Langevin equation models to simulate CBL vertical dispersion. Previous

Langevin equation models will be reviewed in Chapter 3. The development of a Langevin

equation model for homogeneous, skewed turbulence will be presented in Chapter 3. This

model is based on a "linear-skewed" Langevin equation, which assumes that the

deterministic acceleration is a linear function of velocity and the random acceleration is

non-Gaussian and skewed. As discussed by Thomson (1984, 1987), Sawford (1986) and

Sawford & Guest (1987), there is a fundamental difficulty in applying this form of the

Langevin equation: all the cumulants of the random term are non-zero and when higher

order cumulants are important it is difficult to generate such a random variable. For

inhomogeneous turbulence, it appears this difficulty has not been overcome. However,

for the simplified case of homogeneous skewed turbulence, it will be shown that a linear-

skewed Langevin equation model can be successfully developed. A model, used by

previous investigators, based on a "nonlinear-Gaussian" form of the Langevin equation

(which has a non-linear deterministic acceleration and a Gaussian random acceleration)

will also be presented in Chapter 3 for comparison purposes.

Reflection boundary conditions consistent with the assumption of homogeneous, skewed

turbulence are presented in Chapter 3. In a homogeneous Langevin equation model,

interactions with boundaries must be handled by “reflection", the selection of a new

velocity given the incident velocity. A sound basis for reflection boundary conditions in

skewed turbulence was described by Thomson and Montgomery (1994), and was used in

this work. In addition to a method using the standard assumption that the magnitude of

the incident and reflected velocities are positively correlated, two alternatives were

developed and tested.
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Chapter 4 presents the results of tests, comparisons and evaluations of the two Langevin

equation models and the three reflection boundary conditions using (a) simulations of

cases for which analytic statistical properties of particle position and velocity are known,

including well-mixed spatial and velocity distributions and (b) results of Willis and

Deardorff's (1976b, 1978, 1981) laboratory experiments of CBL dispersion. A summary

and the conclusions resulting from this work are presented in Chapter 5.
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2

Convective Boundary Layer

Convective boundary layer (CBL) turbulence properties and dispersion phenomena will

be reviewed in this chapter. Much of the foundation for the current understanding of CBL

turbulence was laid by Deardorff (1970a, 1970b, 1972, 1974a, 1974b), who studied the

CBL using 3-D numerical large-eddy simulations (LES). Much of our current

understanding of tracer dispersion in the CBL comes from Willis and Deardorff’s (1976a,

1976b, 1978 & 1981) water tank experiments, and from Lamb’s (1978a, 1978b, 1982)

numerical experiments using a Lagrangian dispersion model and Deardorff's LES data. In

Section 2.1, turbulent structures in the CBL are reviewed. In Section 2.2, relevant

turbulence scaling relationships are presented and discussed. The "universal" small-scale

properties of turbulent motions are reviewed in Section 2.3. In Section 2.4, observed CBL

dispersion phenomena are reviewed.

2.1  Turbulent structures in the CBL

The properties of turbulence in the CBL are dominated by large, long-lived turbulent

structures that are driven by buoyancy forces associated with heating and/or evaporation

from the surface. Fig. 2.1 shows a schematic diagram of the CBL. The dominant large

scale turbulent structures have a depth comparable to the boundary layer depth, h, which

is equal to the average height of the capping temperature inversion, zi  (typical values

range from 200 m to 2 km). These structures have relatively strong vertical velocities (on

the order of 1 m s–1) and long time scales (1 to 15 min for air to circulate through the
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depth of the boundary layer). As a result, material released into the CBL is mixed

relatively quickly throughout the depth of the boundary layer. For example, the time

required for this is one to two orders of magnitude less than in neutral boundary layers

(Deardorff, 1972).

u

Surface
Layer

Mixed
Layerθ

zi

Fig. 2.1. Schematic diagram of the convective boundary layer showing the mean

potential temperature profile, θ (z) ; the mean wind profile, u(z) (darker vectors);

deviations from mean wind (lighter vectors), boundaries of plumes and thermals; and

height of temperature inversion, zi (after Wyngaard, 1985; Williams and Hacker,

1993; Briggs, 1988).

The time- or area-averaged structure of the CBL can be divided into four layers: surface

layer (z < L ), free convection layer (L < z < 0.1h), mixed layer (0.1h < z < 0.8h), and

interfacial or entrainment layer (0.8h < z < 1.2h) (Holtslag and Nieuwstadt, 1986). |L| is

the absolute value of the Obukhov length, and is the height above which buoyant

production of turbulent kinetic energy dominates, in contrast to shear production closer to

the surface. The surface layer is characterized by an unstable, superadiabatic temperature

profile, upward turbulent heat flux, and nearly logarithmic wind profile. The mixed layer

is characterized by well mixed, relatively uniform profiles of potential temperature and
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wind velocity, and by upward heat flux that decreases approximately linearly with height.

The entrainment layer is characterized by a stable temperature profile, downward heat

flux that decreases to near zero at the top, and mean quantities that vary smoothly with

height between the mixed layer value and the free atmosphere value above. The

entrainment layer represents the area- or time-average thickness of a layer that is

produced by updrafts impinging on a strongly stable temperature inversion, causing the

height of the inversion, zi, to vary considerably.

Observational studies in the laboratory (Willis and Deardorff, 1979) and atmosphere

(e.g., Williams and Hacker, 1993), as well as LES numerical modeling studies (e.g.,

Schmidt and Schumann, 1989) have led to a general understanding of the turbulent

structures in the CBL, and the associated circulation patterns. Warm rising air in the

surface layer is organized into coherent structures called “plumes” with horizontal

dimensions on the order 100 m. Surface-layer plumes extend continuously through the

depth of the surface layer, and typically tilt downwind with height due to wind shear. The

plumes merge and become organized as they rise in the surface and free convection layers

to form the much larger updraft regions or “thermals” in the mixed layer. Thermals have

average horizontal spacing of approximately h, and diameters as large as 0.45h (Young,

1988). Mixed-layer thermals are relatively vertical due to the more uniform wind in that

layer, and extend continuously through the depth of the CBL.

Between updraft regions in the mixed layer are wider downdraft regions, covering

approximately 60% of the horizontal area in the middle of the CBL. The cores of these

downdrafts penetrate all the way through the free convection layer and surface layer.

These downdrafts suppress upward motion and force the surface flow radially outward

from their centers. Some thermals may be relatively closely spaced, with relatively

weaker downdrafts occurring between them. Convergence lines form near the surface
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between adjacent downdraft regions. Warm surface layer plumes are organized along

these lines, with air moving vertically and horizontally toward mixed layer thermals that

tend to occur above the intersections of these lines. The corresponding horizontal pattern

is often described as "spokes" leading to "hubs" below the mixed layer thermals. The

convergence lines can form irregular, interconnected polygon-shaped rings around the

downdraft regions.

Updrafts are driven by buoyancy forces, and gain momentum as they rise in the mixed

layer. When air in updrafts impinges on the stable inversion layer it can penetrate into the

overlying, warmer (higher potential temperature), free-atmosphere air before becoming

negatively buoyant and sinking back down into the mixed layer. The depth of the CBL

increases (relative to an increase or decrease due to any larger-scale mean vertical

velocity) through entrainment of free atmosphere air from above the inversion. In the

entrainment process, curtains of free atmosphere air move downward around the thermals

overshooting into the free atmosphere, and are incorporated into the mixed layer. At any

instant the stable inversion layer may be only meters thick with relatively sharp

discontinuities in temperature, moisture and wind velocity between the boundary layer air

and the free atmosphere air above. However, the height of this layer can vary over

hundreds of meters, between approximately 0.8h and 1.2h, on average. The boundary

layer depth, h, then represents a height where, on average, approximately 50% of the air

has free atmosphere characteristics and 50% has CBL characteristics (Stull, 1988).

2.2  Scaling relationships

The important scaling parameters for average turbulent properties vary between layers in

the atmospheric boundary layer, or ABL. The turbulence scaling regions along with the
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important scaling parameters for each region of the unstable ABL were summarized by

Holtslag and Nieuwstadt (1986), and are shown in Fig. 2.2.

Free 
Convection

Layer

z/h

-h/L

z=|L|

z=0.5|L|

Mixed LayerNear Neutral 
Upper Layer

Surface 
Layer

1.2

0.8

0.1

0.01
1 5 10 50 100

Interfacial/Entrainment Layer

′ w ′ θ o , z
′ u ′ w o , z′ w ′ θ o

′ w ′ θ o , h′ u ′ w o , h, z′ w ′ θ o ,

Fig. 2.2. Unstable boundary layer turbulence scaling regions and the
corresponding basic turbulence scaling parameters (after Holtslag and
Nieuwstadt, 1986).

The surface layer is the layer above the relatively thin viscous and roughness sublayers

adjacent to the surface, and below approximately 0.1h or L  (whichever is lower). The

important scaling parameters in the surface layer are the turbulent kinematic momentum

flux or Reynolds stress at the surface, ′u ′w 0 ; the surface kinematic turbulent heat flux,

′w ′θ 0 ; the height above the surface, z; and the buoyancy parameter, g θ , where θ  is the



12

potential temperature* , θ  is the mean value, ′θ = θ − θ  is the departure from the mean,

and g is the gravitational acceleration. These basic parameters have been used in Monin-

Obukhov similarity theory (e.g., Monin and Yaglom, 1971) to determine the important

length and velocity scales for the statistical properties of meteorological variables in the

surface layer. In addition to the height above ground, z, a second important length scale is

the Obukhov length, L, (Obukhov, 1946) defined as

L =
− ′u ′w 0

3
2

k
g

θ
′w ′θ 0

, (2.1.1)

where k is von Karman’s constant. Shear production of turbulent kinetic energy

dominates for z < L . Buoyant production dominates for z > L . The important velocity

scale is the friction velocity, defined by u* = ′u ′w 0

1
2

. Monin-Obukhov similarity theory

has been used successfully to determine universal relationships for many turbulent

quantities in the surface layer, such as means, variances and covariances of temperature,

wind velocity and water vapor in steady-state horizontally-homogeneous conditions

(Garratt, 1992).

When –h/L > 10, approximately, the boundary layer is in a "convective" state, and a free

convection layer (L < z < 0.1h) exists. In this layer the buoyant production of turbulent

kinetic energy dominates and u*  is no longer the important velocity scale. The height

above ground, z, is the appropriate length scale. The appropriate velocity scale in this

layer has been found to be the local free convection velocity scale defined by

wf = g

θ
′w ′θ 0 z





1/3

. (2.1.2)

*  Virtual potential temperature must be used if the air is not dry.
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Wyngaard et al. (1971) found vertical velocity fluctuations scale with wf  in the free

convection layer, with

σw = 1.34wf , (2.1.3)

where σw  = ′w 2( )1
2

 is the standard deviation of the vertical velocity.

Panofsky et al. (1977) recommended the following expression which interpolates

between the neutral limit predicted by Monin-Obukhov similarity theory (σw = 1.3u* ) and

the free convection layer relationship:

σw = 1.3u* 1 + 3
−z

L












1
3

(2.1.4)

(note that the u*  and L are not relevant scales for the free convection layer, but the fact

that wf ∝ u* −z L( )1
3 has been used in determining this expression).

In the mixed layer of the CBL (0.1h < z < 0.8h, –h/L > 10), Deardorff (1970a, 1970b,

1972, 1974a, 1974b) showed that the important turbulence scaling parameters are h ,

′w ′θ 0 , and 
g

θ
. This is because the buoyant production of turbulence dominates over

shear production, and the height of the capping inversion limits the size of eddies,

becoming the important length scale. The velocity scale formed from these parameters is

w* = g

θ
′w ′θ 0h





1/3

. (2.1.5)

Deardorff showed that many turbulent properties of the CBL scale with h  and w*.

Deardorff (1970b, 1972) proposed that the relevant parameter for determining the state of

the unstable boundary is h/L. He found that mixed layer scaling of vertical velocity and

temperature fluctuations is valid for values of –h/L as low as 4.5 (this is indicated
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approximately by the vertical dashed line in Fig. 2.2). Mixed layer scaling of horizontal

velocity fluctuations becomes valid for values –h/L between 4.5 and 45. The range of

validity of mixed layer scaling has typically been assumed to be approximately –h/L > 10,

as indicated in Fig. 2.2. Using Eqs. (2.1.1) and (2.1.5) and k = 0.4, this corresponds to

approximately w* > 3u* . Deardorff and Willis (1974) estimated that this corresponds to a

typical range of validity in the CBL of U  < 6w* or U < 12 m s–1 using typical values of

u* / U = 0.05 and w* = 2 m s–1.

Mixed layer scaling has been used successfully to obtain universal profiles of vertical

velocity statistics. For example, Fig. 2.3a shows measurements of scaled vertical velocity

standard deviation, σw , as a function of scaled height from various experiments

summarized by Wyngaard (1988). Fig. 2.3b shows Wyngaard's summary of measured

vertical velocity skewness, S ≡ w3 w2( )3/ 2

, versus scaled height (the mean vertical

velocity is assumed to be zero, so w = ′w ). Luhar et al. (1996) reviewed values of S

measured in field and laboratory experiments and found typical values ranged from 0.5 to

0.9, which is consistent with the data plotted in Fig. 2.3b. From Fig. 2.3, it can be seen

that for the bulk of the CBL (the mixed layer) vertical velocity statistics are relatively

homogeneous.

Mixed layer scaling of the data in Fig. 2.3 is successful even though some of it was

collected in conditions that were not horizontally homogeneous or stationary (e.g., in

conditions when the boundary layer was growing due to entrainment of air from the

overlying stable layer). As discussed by Wyngaard (1988), this success is due to time

scales for mixing over the CBL depth being smaller than the time scales for the evolution

of the boundary layer due to horizontal advection or entrainment.
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The positive skewness of the vertical velocity means that (a) the mode (highest

probability value) of the vertical velocity is negative and (b) there are higher probabilities

of large magnitude positive velocities (associated with strong updrafts) than large

magnitude negative velocities. As will be discussed below, the skewed vertical velocity

distribution significantly affects the vertical dispersion of a scalar in the CBL.

(a)

  
 z

/z i
  
 

    σw /w*
     

(b)

    w3 (σw
2)3/2    

  
 z

/z i
  
 

 Minnesota 
1973

Fig. 2.3. CBL measurements of (a) vertical velocity standard deviation,

σw ≡ w2 , scaled by convective velocity scale, w*, and (b) skewness of vertical
velocity skewness versus height scaled by inversion height, zi, as summarized by
Wyngaard (1988).

Scaled variances of horizontal velocity components are approximately homogeneous

throughout the CBL with σu w* = σv w* = 0.6 (Garratt, 1992). Horizontal and vertical

velocity variances are approximately equal in the mixed layer, indicating isotropic

turbulence in this layer. However, horizontal velocity distributions in the CBL are not

skewed (Deardorff and Willis, 1985).
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Boundary layer turbulence scaling relationships have some known limitations. Deardorff

(1974b) showed that mixed layer scaling may be limited because it uses only surface

fluxes and does not include any information about processes at the top of the boundary

layer. In particular, water vapor fluctuations in the CBL are strongly affected by

entrainment processes. Panofsky et al. (1977) showed that horizontal velocity

fluctuations in the unstable surface layer scale with w* (as mentioned above, mixed layer

downdrafts penetrate deep into the surface layer) and not, as predicted by Monin-

Obukhov similarity theory, with u* .

2.3  Small-scale properties of turbulence

Large Reynolds number flows, such as those in the atmospheric boundary layer, contain

velocity fluctuations with a wide range of length and time scales. The Reynolds number,

Re, can be defined as the ratio of inertia force (e.g., du dt ) to viscous force per unit mass

(e.g., ν ∂ 2u ∂z2 ), where ν  is the kinematic viscosity of the fluid. The order of magnitude

of these forces can be estimated using the characteristic velocity, V, and the characteristic

length scale, l, of the turbulent motions. V can be thought of as the root-mean-square of

the velocity fluctuations and is proportional to w* in the mixed layer. The length scale l is,

in general, the distance over which the velocity can undergo a change on the order of V,

and is proportional to h in the mixed layer. The order of magnitude of the inertia and

viscous forces are then V 2 l  and νV l2 , respectively. The Reynolds number is then

Re = Vl

ν

(Monin and Yaglom, 1971).

The largest scale turbulent fluctuations have velocity and length scales that are on the

order of V and l. External conditions (e.g., surface heating in the CBL) produce turbulent
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kinetic energy at these larger scales. The length scales of the larger scale turbulent

motions are often assumed to be proportional to the integral length scale in stationary,

homogeneous turbulence (Tennekes and Lumley, 1972). The Eulerian integral length

scale, lE, is the area under the spatial velocity correlation function, and can be defined as

follows:

lE ≡ 1
σw

2 ′w (0) ′w (x)
0

∞

∫ dx ,

where w(x) is the velocity at position x  in the fluid, and σw  is the velocity standard

deviation. The integral length scale provides a measure of the spatial coherence of

turbulent motions. Time scales associated with larger scale motions can also be defined

using temporal velocity correlation functions. For example, the Lagrangian integral time

scale or correlation time, τ , can be defined as follows:

τ ≡ 1
σw

2 ′w0 ′w (t)
0

∞

∫ dt .

where w(t) is the velocity of a point moving in the fluid (a "fluid particle") at time t, and

w0 is the velocity at t = 0.

The larger scale turbulent motions contain most of the turbulent kinetic energy. However,

for large Re the viscous force is much weaker than the inertia force associated with these

larger scale motions, and, therefore, the viscous force does not act significantly on these

larger scales of motion. As a consequence, the larger scale fluctuations are unstable and

break down into smaller and smaller scale fluctuations (Monin and Yaglom, 1975).

Turbulent kinetic energy cascades to smaller and smaller scales, with most of the

turbulent kinetic energy at a given scale coming from the next-largest scale of motion

(Tennekes and Lumley, 1972). When the velocity and length scales of the motion

becomes small enough that viscous force is comparable to the inertia force (i.e., the
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Reynolds number of the motions is of order unity), then kinetic energy is dissipated into

internal energy (heat).

So, while external conditions produce turbulent kinetic energy at the larger scales of

motion, it is dissipated at the smallest scales of motion. Under steady-state conditions,

this production and dissipation occur at the same rate. If there is an imbalance, the

turbulent kinetic energy dissipation rate quickly adjusts to match the production rate

(Tennekes and Lumley, 1972).

For large Re flows, there is hypothesized to be a "universal" equilibrium range of

turbulent velocity fluctuation frequency or wavenumber in which the statistical properties

of the smaller scale fluctuations are independent of the properties of the larger scale

fluctuations. Kolmogorov’s first similarity hypothesis states that the statistical properties

of motions in this equilibrium range are determined uniquely by the mean turbulent

kinetic energy dissipation rate per unit mass , ε , and kinematic viscosity, ν  (Monin and

Yaglom, 1975).

Using Kolmogorov’s first similarity hypothesis, the scales of motion in the small-scale

end of the equilibrium range, the dissipation range, can be estimated from ε  and ν  by

dimensional analysis. These Kolmogorov microscales are length scale η = ν3 ε( )1
4 ,

velocity scale uη = νε( )1
4 , and time scale τη = ν ε( )1

2 . In the convective boundary layer,

typical values for τη  are less than a second, values of η  are on the order of a millimeter,

and values of uη  are on the order of a hundredth of a meter per second. For example,

using typical values of  ε ≈ 0.4 w*
3 h( ), w* ≈ 1 m s–1, h  ≈ 1000 m, and ν  = 1.5 × 10–5 m2

s–1, the values of the Kolmogorov microscales are η ≈ 2  mm, uη ≈ 0.009  m s−1, and

τη ≈ 0.2 s .
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At the larger scale end of the equilibrium range, Kolmogorov’s second similarity

hypothesis states that an inertial subrange exists in which viscous forces are not important

and the statistical properties of the motions are determined entirely by ε . In the inertial

subrange, turbulent motions have time scales much smaller than the energy-containing

scales (which can be characterized by a Lagrangian velocity correlation time, τ ), and

much larger than the smaller energy-dissipating scales (characterized by the Kolmogorov

microscale,τη ). In the inertial subrange, statistical properties of the change (in space and

time) of fluid velocity are assumed to be approximately stationary, homogeneous and

isotropic. This is called “local isotropy”.

One of the implications of the second Kolmogorov hypothesis is that the statistical

properties of the change of the Lagrangian velocity of a fluid particle, associated with

frequencies in the inertial subrange, is a function only of ε  and the time lag δt . As a

consequence, the Lagrangian structure function (considering one component of velocity)

is hypothesized to be

δw( )2 = C0εδt , (2.2.1)

where δw ≡ w(t + δt) − w(t) is a change in the Lagrangian velocity of a fluid particle

during a time lag, δt , in the range τη << δt << τ , and C0  is a universal constant (Monin

and Yaglom, 1975, p. 359). Similarly, even moments of the velocity change are

δw( )n ∝ εδt( )n
2 (2.2.2)

(n = 2, 4, . . .). Odd moments are hypothesized to be zero (i.e., the probability distribution

of δw is assumed to be symmetric) due to the locally isotropic turbulence in the inertial

subrange. These properties have been used in the formulation of Langevin equation

models, as will be discussed in Chapter 3.
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As stated by Monin and Yaglom (1975, pp. 584-585), Kolmogorov's similarity

hypotheses "cannot be regarded as quite exact." This is because the statistical properties

of small scale motion may depend not only on the mean dissipation rate, ε , but on the

probability distribution of ε . The distribution of ε  depends on the fluctuations in the

velocity field which, in turn, depends on the larger scale properties of the flow. Therefore,

the statistical properties of small-scale motion may not be truly universal.

The second Kolmogorov similarity hypothesis has been used successfully to predict some

of the statistical properties of velocity fluctuations in the inertial subrange. For example,

it has been used successfully to predict the form of the turbulent kinetic energy spectral

density in the inertial subrange (e.g., Garratt, 1992). With regard to the Lagrangian

structure function, however, Pope (1994) wrote "To date, Lagrangian statistics in high-

Reynolds number flows have proven inaccessible both to experiment and to direct

numerical simulation. Consequently, a direct test of (the Lagrangian structure function

predicted by Kolmogorov's second hypothesis) has not been possible."

2.4  Dispersion phenomena

Willis and Deardorff (1976a, 1976b, 1978 & 1981) simulated downwind advection and

vertical dispersion from continuous point sources in the CBL using a laboratory water

tank. The observed ensemble-average crosswind-integrated concentration, C, from some

of these experiments are summarized in Fig. 2.4. These experimental observations have

been made dimensionless using the mixed layer scaling parameters h  and w*. Free-

convection-layer and mixed-layer scaling is valid for the water tank experiments because

–L is effectively very small (and, correspondingly, –h/L, is very large) since there is no

mean flow in the water tank. The concentration is made dimensionless through scaling by

the concentration value corresponding to a uniform distribution in the vertical, Q Uh,
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where Q is the continuous point source emission rate, and U is the mean horizontal wind

speed.
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Fig. 2.4. Smoothed contours of dimensionless cross-wind-integrated
concentration, CUh/Q, versus dimensionless height, Z=z/h, , and downwind
distance, X  = xw* /Uh,  from Willis & Deardorff (1976b, 1978) laboratory
experiments for dimensionless source heights of (a) zs h = 0.067 (top figure),
(b) zs h = 0.24 (bottom), where x is downwind distance, w* is the convective
velocity scale, U is the mean horizontal wind speed at the source height, and h  is
the mean inversion height. Arrows indicate source location.

Most of Willis and Deardorff's experiments used instantaneous line sources (ILS), but

some used continuous point sources (CPS). Since there was no mean horizontal flow in

the water tank. CPS experiments were conducted by moving the source horizontally, to
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simulate a uniform horizontal wind. Concentrations measured from ILS experiments

(with the line source oriented in the x direction) were transformed to simulated CPS

concentrations (with a mean wind in the x direction). This was done by assuming

downwind dispersion relative to the mean horizontal wind U (assumed to be constant

with height) is negligible. Using these assumptions, dimensionless time in the

experiments, t t* , where t* ≡ h w*  is the convective time scale, is transformed into a

dimensionless downwind distance X = xw*
Uh . This makes use of Taylor's hypothesis

that the eddies are advected past a fixed point faster than the time for them to

significantly change their characteristics. Willis and Deardorff (1976b) showed that these

assumptions were reasonable for U = 2.8w*  by comparing their ILS and CPS

observations. They also estimated that these assumptions are valid if U > 1.2w* or

U > 2σu , where σu is the standard deviation of the downwind component of the wind

velocity.

The first Willis and Deardorff experiments were for near-surface sources. Fig. 2.4a shows

that the height of the locus or "line" of the maximum ensemble-average cross-wind-

integrated concentration of tracer from a near-surface source stays near the surface

initially and then quickly begins to increase with downwind distance starting near X =

0.5.  Lamb (1978a, 1978b, 1982) studied CBL dispersion using a Lagrangian numerical

model, and velocity fields from Deardorff's (1974a) 3-D LES simulations. Lamb's results

for near-surface source were similar to Willis and Deardorff's observations.

Lamb also simulated elevated sources and found that the downwind dispersion was

significantly different from that from a near-surface source. Lamb's simulations inspired

Willis and Deardorff (1978, 1981) to perform the water tank experiments with elevated

sources at zs = 0.24h (observations shown in Fig. 2.4b) as well as zs = 0.49h. The Lamb

simulations and the Willis and Deardorff experiments for elevated sources showed
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similar results. Fig. 2.4b shows that, for an elevated source, the height of the maximum

concentration line initially decreases with downwind distance in the Willis and Deardorff

experiments. After encountering the surface near X = 0.5, the maximum concentration

line stays near the surface until it begins to ascend near X = 0.8.

Lamb’s and Willis & Deardorff's studies showed that the positive skewness of the vertical

velocity distribution, and the long Lagrangian correlation time of the vertical velocity are

key to explaining CBL vertical dispersion phenomena. As discussed by Lamb (1982),

neutrally buoyant material emitted from an elevated source has a higher probability of

encountering a downdraft because of the positively skewed vertical velocity distribution.

Lamb (1978a) found that in the middle of the mixed layer the fraction of the horizontal

area covered by downdrafts was approximately 60%, with the remaining 40% covered by

stronger updrafts. Due to the long-lived, deep convection found in the CBL, material

emitted into a downdraft will typically be carried to the surface. Because downdrafts

predominate, the most likely event is for emitted material to move relatively slowly

toward the surface in downdrafts, and then horizontally into convergence zones of

updrafts. Material directly emitted from an elevated source into the strong updrafts is

quickly recycled into downdrafts. The combined effect is that the height of the maximum

concentration line descends with downwind distance for elevated sources, as shown in

Fig. 2.4b.

Material emitted by a near-surface source is either directly incorporated into an updraft

or, if it is emitted in a downdraft area, moves horizontally near the surface until it is

incorporated in an updraft. Material initially released into an updraft from a surface

source doesn't recirculate down near the surface before material released in downdraft

areas is swept into updrafts. Because downdrafts cover a majority of the horizontal area,

the maximum concentration line initially stays near the surface, but then quickly begins
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to ascend, as shown in Fig. 2.4a, when the most likely event is that material is

incorporated into updrafts.

Note that at some downwind distances, the near-surface concentration of material emitted

from the elevated source (Fig. 2.4b) is greater than from the near-surface source (Fig.

2.4a). Also note that for both source heights the near-surface concentration decreases to a

minimum before increasing toward the well-mixed, steady-state concentration value

(CUh/Q ≈ 1) at the furthest downwind distances.

The ability to simulate these phenomena is critical to accurate calculation of tracer

concentrations in the CBL. For example, for an elevated source, significant

underprediction of ground-level pollutant concentrations can occur in dispersion models

if these processes are not taken into account. These underpredictions can be as high as a

factor of 2.9 (Briggs, 1993a).

The dispersion phenomena found in these Willis and Deardorff's laboratory experiments

and Lamb's numerical experiments have been observed in the atmosphere during a CBL

dispersion field study (Kaimal et al., 1986; Briggs, 1993a, 1993b). Briggs (1993b)

showed that the field experiment observations were in good agreement with the Willis

and Deardorff laboratory observations, as well as Lamb’s numerical modeling results.

In the numerical modeling work presented in the next chapters, we shall make use of

Willis and Deardorff's simplified conceptual model of dispersion from a continuous point

source in the CBL. This conceptual model assumes that (1) mixed-layer scaling is valid,

(2) there is a uniform horizontal mean wind velocity, U, and (3) there are velocity

fluctuations only in the vertical velocity component, w.



25

When using these simplifying approximations, the correlation of the vertical and

horizontal velocity fluctuations, e.g., ′u ′w , is neglected. ′u ′w  is non-zero and negative in

the CBL (due to the downward turbulent flux of momentum), with a maximum

magnitude at the surface (e.g., Stull, 1988). However, as discussed above, the momentum

flux is not an important turbulence scaling parameter in the bulk of the CBL (z > L ).

The good agreement between the results of Lamb's simulations (using 3-D LES velocity

fields) and Willis and Deardorff's experiments, indicate that the simplifying assumptions

used by Willis and Deardorff (that horizontal velocity fluctuations could be neglected and

the mean horizontal wind is uniform) are reasonable. The mean wind speed range for

which horizontal velocity fluctuations can be neglected, U > 1.2w* (estimated using the

criteria U > 2σu  by Willis and Deardorff, 1976b), appears to be reasonable because the

mean wind speed of the LES data used by Lamb was close to the lower end of this range,

U ≈ 1.4w* .

The range of validity of these assumptions is quite large, and is approximately

1.2w* < U < 6w* ,

or

2.4 < U < 12 m s–1,

for a typical value of w* = 2 m s–1. The upper limit is imposed by the range of validity of

mixed layer scaling (–h/L > 10). The lower limit is imposed by the assumption that

horizontal velocity fluctuations are negligible compared to mean wind advection

(U > 2σu ).
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Because mixed-layer scaling is not valid for z < 0.1h , the use of mixed layer scaling will

not be valid for source heights, zs , below 0.1h until the vertical spread of material has

reached a depth greater than 0.1h.  Nieuwstadt (1980) used observations from the Prairie

Grass field experiment (continuous point source at roughly zs  = 0.0005h) and the criteria

σ z /h > 0.1 (where σ z  is the vertical standard deviation of the concentration distribution)

to estimate that mixed layer scaling of vertical dispersion is valid for dimensionless

downwind distance X > 0.23 for a ground-level point source.
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3

Langevin Equation Models

In this chapter, Lagrangian stochastic modeling of turbulent dispersion based on the

Langevin equation is reviewed, and two Langevin-equation-based models for convective

boundary layer dispersion are presented along with “reflection” boundary conditions at

the top and bottom of the boundary layer. Pioneering work in the stochastic approach to

diffusion was done in the early 1900s by Einstein, Smoluchowski, and Langevin in work

on diffusion due to Brownian motion (Gardiner, 1990). Langevin introduced the

Lagrangian stochastic approach, with drag and random forces acting on a particle. Taylor

(1921) first proposed a Lagrangian statistical approach to turbulent dispersion. Obukhov

(1959) proposed that the Lagrangian evolution of fluid particle velocity and position

could be described by the Fokker-Planck equation for the probability distribution function

of velocity and position. More recently, beginning in the 1970s, considerable progress has

been made in the theory and application of Lagrangian stochastic models of fluid particle

trajectories in turbulent flows. Reviews of this subject have been written by Durbin

(1983), Sawford (1985 & 1993), Thomson (1987), Pope (1987 & 1994), Wilson and

Sawford (1996), and Rodean (1996).

The basis of the Lagrangian stochastic approach to turbulent dispersion is reviewed in

Section 3.1. The Langevin equation of motion for a fluid particle is presented in Section

3.2. Two forms of the Langevin equation are presented. Sections 3.3 presents the Fokker-

Planck equation and Kramers-Moyal expansion, which describe the particle velocity

probability distribution. These two equations describe the same stochastic processes as
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the two forms of the Langevin equation. Section 3.4 presents the development of two

Langevin equation models (one used by previous investigators and one new model) for

the time evolution of particle velocity assuming homogeneous, skewed fluid velocity

distribution. Using some of the properties of these Langevin equation models, Section 3.5

discusses the assumptions inherent in the Langevin equation approach and their

justification. Section 3.6 presents the development of methods for integrating the two

forms of the Langevin equation to develop an equation for numerically simulating the

time evolution of particle velocity. The simulation of particle position is discussed in

Section 3.7. The development of methods for selecting new velocities for particles that

encounter a boundary (reflection boundary conditions) are discussed in Section 3.8.

3.1  Lagrangian stochastic approach

Lagrangian stochastic models of turbulent dispersion can be used to describe the possible

trajectories of fluid particles. A fluid particle represents a small, idealized volume of fluid

with spatial dimensions much larger than the average distance between molecules.

However, these spatial dimensions are sufficiently small, compared to distances that the

fluid properties vary significantly, that the properties in this small volume can be

assumed to be uniform. The spatial dimensions of a fluid particle are also small enough

that, for the times under consideration, it does not undergo significant deformation, and it

can be effectively treated as a “point” moving in the fluid. The effects of molecular

diffusion are neglected because they are small compared to the effects of turbulent

dispersion in the high Reynolds number flows found in atmospheric boundary layers.

Stochastic models can be used to determine the probability distribution of future particle

positions, given initial positions. These probability distributions can be use to calculate

ensemble-mean concentration of material at a desired time, given the concentration
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distribution at earlier times. Ensemble-mean air concentration, C(r,t) , (mass per unit

volume) at position r  and time t can be determined as follows:

C(r,t)= dt0 dr0 q(r0 ,t0 )P(r,t  ; r0 ,∫
−∞

t

∫ t0 ) , (3.1.1)

where q(r0 ,t0 ) represents the source distribution term at position r0  at time t0 (trace

material mass emitted per unit time per unit volume), and P(r,t  ;  r0 ,t0 )  is the probability

density function for the particle position r  at time t given it was at position r0  at time t0

(Tennekes and Lumley, 1972). Considering the ensemble of particle trajectories that

originate at position r0  at time t0, P(r,t  ;  r0 ,t0 )  can be thought of as the fraction of

particles per unit volume that are at r  at later time t. If the source distribution term is

constant with time and the turbulent flow is stationary (i.e., the statistical properties do

not change with time), the ensemble-average concentration can be used as an estimate of

the time-average concentration through the ergodic hypothesis (Lumley and Panofsky,

1964).

We will make use of Langevin-equation-based Lagrangian stochastic models that can be

used to describe P(r,t  ;  r0 ,t0 )  through the ensemble of possible particle trajectories,

ri (t),  i = 1,2, . . .{ } . An individual particle trajectory, ri (t), is an independent realization

from this ensemble. A Langevin equation model can be used in Monte Carlo simulations

to calculate a large sample of particle trajectories, from which the distribution

P(r,t  ;  r0 ,t0 ) , its moments, and, using Eq. (3.1.1), the mean concentration C(r,t)  can be

estimated.
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3.2  Langevin equation

The Langevin equation is a stochastic differential equation that can be used to describe

the Lagrangian acceleration of a fluid particle. The generalized Langevin equation can be

written as follows:

dw

dt
= a(w) + Λ (t), (3.2.1)

where w is the velocity of a fluid particle, and t is time (van Kampen, 1992). (We are

studying the case of vertical dispersion, and will restrict our attention to one component

of the acceleration.) Eq. (3.2.1) assumes that the net acceleration of a particle is the sum

of a deterministic acceleration, a(w) , which is a function of w, and a rapidly fluctuating

random acceleration, Λ (t) , which is not a function of w . Λ (t)  is assumed to be

uncorrelated over any time period of interest. It is modeled as delta-function correlated in

time, with statistical properties defined by the following autocorrelation functions:

  
Λ(t1)Λ(t2 )Λ(t3 )L Λ(tn ) = Γnδ (t1 − t2 )δ (t1 − t3 )L δ (t1 − tn ), (3.2.2)

where n = 1, 2, . . ., and the notation     denotes the cumulant# of a quantity. The set of

coefficients {Γn, n  = 1, 2, …} are to be determined from the statistical properties of the

fluid velocity.

The correlation functions defined by Eq. (3.2.2) in cumulant notation can be written in

terms of ensemble average quantities. The first three cumulants are the same as the first

three central moments, but this is not true of higher cumulants. If the random acceleration

# The nth cumulant of a random variable is a function of the moments of order n and lower (Gardiner,

1990) .  For  example ,  x = x ,  x2 = x2 − x 2 ,  x3 = x3 − 3x2x + x 3,

x4 = x4 − 4x x3 − 3x2 2
+ 12x 2 x2 − 6x 4. For a Gaussian distribution, the cumulants for n = 3, 4,

... are zero. So, the higher order cumulants (n = 3, 4, ...) are a measure of the departure of a probability

distribution from a Gaussian distribution.



31

has zero mean, Λ (t) = 0, the first- through fourth-order correlation functions, for

example, defined by (3.2.2) may be written as follows:

Λ (t) = Λ (t) = 0,

Λ (t1)Λ (t2 ) = Λ (t1)Λ (t2 ) ,

Λ (t1)Λ (t2 )Λ (t3 ) = Λ (t1)Λ (t2 )Λ (t3 ), and

Λ (t1)Λ (t2 )Λ (t3 )Λ (t4 ) = Λ (t1)Λ (t2 )Λ (t3 )Λ (t4 )

              − 3Λ (t1)Λ (t2 )
2 ,

where the notation   ( ) denotes the ensemble-average value of a quantity.

We will make use of two forms of the Langevin equation in which the random

acceleration, Λ (t) , has one of the following two properties:

(1) Gaussian: Λ (t)  is a Gaussian process, which means   P Λ (t1),Λ (t2 ),K Λ (tn )( )  is a

multivariate Gaussian distribution completely defined by the means,

  Λ (ti ),  i = 1,2,K n , and autocovariances,   Λ (ti )Λ (t j ),  i = 1,2,K n,  j = 1,2,K n.

Correspondingly, the third and higher order (n = 3, 4, . . .) cumulant autocorrelation

functions given by Eq. (3.2.2) are zero.

(2) Skewed: Λ (t)  is a non-Gaussian, skewed process, which means the cumulant

autocorrelation functions defined by Eq. (3.2.2) are non-zero for all n  (n = 1, 2, ...).

The velocity equation

dz

dt
= w , (3.2.3)
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where z is the particle position, along with Eqs. (3.2.1-2) define a stochastic process for

the joint evolution of w and z of a fluid particle. In order to calculate the (w, z) phase

space trajectory of a particle, we need to obtain an equation for the time evolution of

particle velocity, w(t), by integrating the Langevin equation (3.2.1), and, then, integrate

the velocity equation (3.2.3) to calculate the time evolution of the particle position, z(t).

3.3  Kramers-Moyal expansion and Fokker-Planck equation

In developing Langevin equation models, it is often very helpful to make use of the

equations describing the time evolution of the joint probability density function of

particle velocity and position, P(w, z,t  ;  w0 , z0 ,t0 ). These are the Kramers-Moyal

expansion and the Fokker-Planck equation, which describe the same stochastic processes

as the Langevin equations with skewed and Gaussian random accelerations, respectively.

The Kramers-Moyal expansion may be written as follows (van Kampen, 1992):

∂P

∂t
= − ∂

∂z
wP( ) + (−1)n

n!
∂ n

∂wn
bnP( )

n=1

∞

∑ . (3.3.1)

where

P = P(w, z,t  ;  w0 , z0 ,t0 )

is the joint probability distribution function of velocity w and position z after time interval

δt ≡ t − t0 , given velocity w0 and position z0 at the beginning of the time interval. Eq.

(3.3.1) with bn = 0 for n = 3, 4, . . . is the Fokker-Planck equation, which describes the

same process as the Langevin equation with a Gaussian random acceleration.

The coefficients bn, n = 1, 2, . . ., in the Kramers-Moyal expansion (or Fokker-Planck

equation for n  = 1, 2) are defined as follows:
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bn =
δw( )n

δt
,  as  δt → 0 . (3.3.2)

where δt ≡ t − t0 , δw ≡ w − w0 , and δw( )n
, n = 1, 2, . . ., are the velocity increment

moments. The Langevin equation coefficients Γn  and Kramers-Moyal coefficients bn are

directly related. This can be shown by calculating the small time increment moments of

the velocity increment, obtained by integrating the Langevin equation (this will be done

later in this chapter). The result, for our case of homogenous statistical properties of the

fluid velocity with zero mean, is, for n = 1,

b1 = a(w), (3.3.3)

and for n = 2, 3, . . .,

bn = Γ n . (3.3.4)

The Kramers-Moyal expansion (equivalent to the Langevin equation with a skewed

random acceleration) may then be written as follows:

∂P

∂t
= − ∂

∂z
wP( ) − ∂

∂w
a(w)P( ) + (−1)n

n!
∂ n

∂wn
Γ nP( )

n=2

∞

∑ . (3.3.5)

Similarly, the Fokker-Planck equation (equivalent to the Langevin equation with a

Gaussian random acceleration) may then be written as follows:

∂P

∂t
= − ∂

∂z
wP( ) − ∂

∂w
a(w)P( ) + 1

2
∂ 2

∂w2 ΓP( ) , (3.3.6)

where Γ ≡ Γ2 .
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3.4  Langevin equation models for skewed turbulence

In this section, we will explore two forms of the Langevin equation for turbulent flows

with skewed velocity statistics:

(1) the nonlinear-Gaussian Langevin equation with a deterministic term, a(w) , that is

a nonlinear function of w, and a Gaussian random term, Λ (t) ; and

(2) the linear-skewed Langevin equation with a deterministic term, a(w) , that is a

simple linear function of w and a skewed random term Λ (t) .

Given the form of the Langevin equation, assumptions and constraints must then be used

to determine a(w)  and the random acceleration coefficient(s), Γn, in terms of known

statistical properties of the fluid velocity. In particular, the first three moments of the fluid

velocity (wf , wf
2 , and wf

3 , with wf  assumed to be zero) will be used, because they have

been shown to be key to CBL dispersion processes, as discussed in Chapter 2. Before

describing the development of Langevin equation models for the time evolution of

particle velocity in turbulence with a skewed velocity distribution (i.e., non-zero

skewness, S = wf
3 wf

2( )3
2
), previous work on these types of models will be reviewed.

3.4.1  Previous studies

The development of Langevin equation dispersion models for skewed turbulence began

in the 1980s, sparked by interest in modeling vertical dispersion in the skewed turbulence

of the convective boundary layer. Models based on both linear-skewed and nonlinear-

Gaussian Langevin equations have been used.
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Thomson (1987) demonstrated that the most rigorous constraint, to date, that must be met

by a Langevin equation model is the well-mixed condition. This condition states that trace

material initially well-mixed in a fluid must remain so, and, therefore, the joint

probability distribution of position and velocity of tracer particles, P(w, z)  will remain

the same as that of the fluid, Pf (w, z). Correspondingly, the fluid particles and the tracer

will have the same velocity moments, wf
n = wn , position moments, z f

m = zm , and joint

moments wf
nz f

m = wnzm , for m  = 1, 2,. . . and n  = 1, 2,. . . .

Nonlinear-Gaussian Langevin equation models (e.g., Luhar & Britter, 1989; Weil, 1989

& 1990; Du et al., 1994; Rotach et al., 1996; Luhar et al., 1996) have been successfully

developed and applied to the problem of vertical dispersion in the CBL assuming that the

vertical velocity distribution is skewed and varies with height (although, the variation of

these properties with height in the surface or free convection layers was not resolved in

these studies). Hurley and Physick (1993) used a nonlinear-Gaussian Langevin equation

model with the simplifying approximation that the skewed vertical velocity distribution is

homogeneous in the vertical. They showed fair results compared to laboratory

experiments on vertical dispersion in the CBL.

All these nonlinear-Gaussian Langevin models have been developed using an approach

introduced by Thomson (1987). In Thomson’s approach, the coefficient Γ  in the

Gaussian random acceleration is chosen so the resulting Lagrangian structure function is

consistent with the second Kolmogorov similarity hypothesis (discussed in Chapter 2).

The deterministic term, a(w) , is then determined from the Fokker-Planck equation using

an assumed form for the fluid velocity probability distribution, and applying the well-

mixed condition.
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The development of linear-skewed Langevin equation models (Thomson, 1984; van Dop

et al., 1985; de Baas et al., 1986; Sawford, 1986; Sawford and Guest, 1987) has been less

successful in meeting the well-mixed constraint for skewed and inhomogeneous

turbulence. As discussed by Thomson (1984, 1987), Sawford (1986) and Sawford and

Guest (1987), there appear to have been several problems with the formulation and

application of these models in bounded flows with strongly inhomogeneous

parameterizations of the fluid velocity statistics. In addition, they discuss a fundamental

difficulty in applying this type of model: all the cumulants of the random acceleration are

non-zero (as noted above), but when higher order cumulants are important it is difficult to

generate such a random variable.  For inhomogeneous turbulence, it appears this

difficulty has not been overcome. However, for the simplified case of homogeneous

skewed turbulence it will be shown below that a linear-skewed Langevin equation model

can be successfully developed, and that it satisfies the well-mixed condition.

3.4.2  Assumptions

In this work, it will be assumed that the ambient turbulence is homogenous and

stationary; i.e., the statistical properties of the fluid velocity, wf, are not a function of

time, t, or position, z . It will also be assumed that the mean fluid velocity is zero, wf = 0.

These assumptions imply that

(a) the deterministic acceleration, a(w) , depends only on w and not z or t,

(b) the random acceleration coefficients {Γn} are also not functions of z or t, and

(c) the random acceleration Λ(t) has a zero mean.

The assumption of homogeneous turbulence allows significantly longer time steps to be

used. Time steps must be kept small relative to the Lagrangian velocity correlation time,

τ, in typical numerical methods. However, if the turbulence is inhomogeneous with a
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Lagrangian time scale that approaches zero at a boundary (as in parameterizations of

surface layer turbulence), very small time steps are required. In addition, inhomogeneity

in the fluid vertical velocity moments also limits the time step in typical numerical

simulations (Thomson, 1987; Wilson and Flesch, 1993). In Langevin equation numerical

simulations of CBL dispersion assuming inhomogeneous turbulence, time steps on the

order of ∆t  = 0.01τ  are required for accurate solutions (Luhar and Britter, 1989; Wilson

and Flesch, 1993). Hurley and Physick (1993) used a significantly longer time step of ∆t

= 0.3τ  in their homogenous turbulence simulations. Some numerical error results when

using ∆t  = 0.3τ   with typical numerical methods in homogeneous nonlinear-Gaussian

Langevin equation models (as noted by Hurley and Physick and shown in the next

chapter), but time steps substantially larger than ∆t  = 0.01τ   may be used with negligible

error.

Using the homogeneous turbulence assumption, Hurley and Physick (1993) developed a

CBL dispersion model based on the nonlinear-Gaussian Langevin equation. This

approach will be presented in the next section, Section 3.4.3. In Section 3.4.4, the

development of an alternative model using the linear-skewed Langevin equation and the

homogeneous turbulence assumption will be presented.

3.4.3  Nonlinear-Gaussian Langevin equation model

As mentioned above, we must integrate the Langevin equation (3.2.1) to obtain an

equation for the time evolution of particle velocity. For the case of a nonlinear

deterministic acceleration, a(w) , it may not be possible to explicitly integrate Eq. (3.2.1).

An approximate velocity equation can be developed as follows. Integrating Eq. (3.2.1)

results in the following expression for the velocity change:
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∆w = w(∆t) − w(0) = a(w)dt
0

∆t

∫ + Λ (t)dt
0

∆t

∫ ,

where Λ (t)  is Gaussian for this case. Using a Taylor series expansion for a(w)  about t =

0,

a w(t)( ) = a w0( ) + ∂a w( )
∂w t =0

∂w

∂t t =0

t + O(t2 ) ,

where w0 ≡ w(0), the change in velocity becomes

∆w = a(w0 )∆t + O(∆t2 ) + Λ (t)dt
0

∆t

∫ .

For ∆t << 1, the approximate velocity equation is

∆w ≅ a(w0 )∆t + rG (∆t), (3.4.1)

where

rG (∆t) ≡ Λ(t)dt
0

∆t

∫ .

Since Λ (t)  is Gaussian for this form of the Langevin equation, the statistical properties

of rG (∆t)  are determined by its first two moments. Since Λ (t) = 0, the mean is zero,

rG (∆t) = 0. (3.4.2)

The second moment is

rG
2 (∆t) = Λ(t)dt

0

∆t

∫










2

= Λ(t)Λ( ′t )d ′t dt
0

∆t

∫
0

∆t

∫ = Γδ (t − ′t )d ′t dt
0

∆t

∫
0

∆t

∫
= Γ∆t

(3.4.3)
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For ∆t << 1, the Lagrangian structure function, defined as ∆w( )2 , corresponding to this

Langevin velocity equation is

∆w( )2

∆t <<1 = a(w0 )∆t + rG (∆t)[ ]2

= rG
2 (∆t)

(3.4.4)

(note that terms of order ∆t2  and higher vanish, that rG (∆t)and a(w)  are independent so

a(w0 )rG (∆t) = a(w0 )  rG (∆t), and that rG (∆t) = 0). Using Eqs. (3.4.3) and (3.4.4),

∆w( )2

∆t <<1 = Γ∆t . (3.4.5)

The coefficient Γ  can be specified for large Reynolds number flows using the

Lagrangian structure function predicted by the second Kolmogorov similarity hypothesis,

which, as described in Chapter 2, is

∆w( )2 = C0ε∆t (3.4.6)

for ∆t << τ . The Langevin equation’s Lagrangian structure function given in Eq. (3.4.5)

is consistent with Eq. (3.4.6) if

Γ = C0ε . (3.4.7)

With the random acceleration coefficient, Γ , specified, it only remains to determine the

deterministic acceleration, a(w) . It can be determined using the Fokker-Planck equation.

Using the assumptions that the statistical properties of w are independent of z,  the

Fokker-Planck equation for velocity alone can be obtained by integrating the Fokker-

Planck equation for P(w,z), Eq. (3.3.6), over z = –∞ to ∞, resulting in:

∂P(w)
∂t

= − ∂
∂w

a(w)P(w)( ) + 1
2

∂ 2

∂w2 ΓP(w)( ). (3.4.8)
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(In performing this integration, the assumption is made that as w → −∞, P(w) → 0  faster

than a(w)  increases.) Assuming stationary conditions, so that the left side of this

equation is zero, and integrating in velocity from − ∞  to w  the following expression for

a(w)  is obtained:

a(w) = 1
2P(w)

∂ ΓP(w)( )
∂w

. (3.4.9)

The well-mixed constraint ensures that P(w) = Pf (w) is a solution to the Fokker Planck

equation. Therefore, given an expression for Pf (w), Eq. (3.4.9) may then be used to

obtain an expression for a(w)  that satisfies the well-mixed constraint. Since many

skewed forms for Pf (w) can potentially be used, this approach does not lead to a unique

a(w) .

Typically, nonlinear-Gaussian Langevin equation models for the CBL have been

developed (e.g., Luhar & Britter, 1989; Weil, 1989 & 1990) using a bi-Gaussian

distribution for Pf (w) introduced by Baerentsen and Berkowicz (1984). This distribution

is a linear combination of two Gaussian distributions, and can be written as follows:

Pf (w) = λ1P1(w) + λ2P2 (w) (3.4.10)

where

P1(w) = 1
2πσ1

exp −
w − w1( )2

2σ1
2













P2 (w) = 1
2πσ2

exp −
w − w2( )2

2σ2
2













(3.4.11, 12)
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The six parameters of this distribution, w1 , w2 , σ1, σ2, λ1, and λ2  will be specified

using the first three moments of the fluid velocity (wf =0, wf
2 , and wf

3 ), which are

assumed to be known. These six parameters can be determined from four equations for

moments zero through three of this distribution, and two closure assumptions: w1 = σ1

and w2 = −σ2  (see Appendix A). The result is

w2 = −σ2 =
wf

3 − wf
3 2

+ 8wf
2 3

4wf
2

, (3.4.13)

w1 = σ1 =
−wf

2

2w2

=
wf

3 + wf
3 2

+ 8wf
2 3

4wf
2

, (3.4.14)

λ1 = −w2

w1 − w2

, and (3.4.15)

λ2 = w1

w1 − w2

. (3.4.16)

The parameters of the bi-Gaussian distribution are now defined.

Using Eq. (3.4.9), a(w)  may be determined using the bi-Gaussian distribution (3.4.10-12)

and the well-mixed condition, P(w) = Pf (w). The result is

a(w) = −Γ
2 λ1P1(w) + λ2P2 (w)( )

λ1P1(w)
σ1

2 w − w1( ) + λ2P2 (w)
σ2

2 w − w2( )







 (3.4.17)

This deterministic acceleration is a complex, non-linear function of velocity, and is not

unique, since it depends on the chosen form of the velocity distribution (in this case a bi-

Gaussian distribution).
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In summary, given the fluid velocity moments wf
2  and wf

3 , and the dissipation rate, ε

(or, as we shall see below, a Lagrangian correlation time scale of the velocity), this

nonlinear-Gaussian model is completely defined by the first-order-∆t accurate velocity

equation,

∆w ≅ a(w0 )∆t + rG (∆t), (3.4.1)

the statistical properties of rG (∆t)  given by Eqs. (3.4.2-3) and (3.4.7), and a(w)  given by

Eqs. (3.4.10-17).

3.4.4  Linear-skewed Langevin equation model

For the linear-skewed Langevin equation, the deterministic acceleration in (3.2.1) is

assumed to be a linear function of velocity,

 a(w) = −αw . (3.4.18)

Consistent with our assumption of homogeneous and stationary velocity statistics, α  and

the set of the random acceleration coefficients {Γn, n = 1, 2,. . . } in (3.2.2) are constant

(not a function of z or t). In this case, the Langevin equation (3.2.1) may be integrated

explicitly, and has the solution

  

w(t) = w(0)e−αt + eα (s− t )Λ(s)ds
0

t

∫
≡ rs (t)

1 244 34 4

, (3.4.19)

where Λ(t)  is a non-Gaussian, skewed process for this form of the Langevin equation.

The statistical properties of w(t) and rs(t), and the coefficients α  and {Γn, n = 1, 2, 3,. . . }

can be determined from an analysis of the velocity moments and autocorrelation function

using the Langevin equation solution (3.4.19) with the assumptions above. Using the
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Langevin equation, the nth moment of w and r s can be determined by taking the

ensemble-average value of the nth  power of the Langevin equation solution for w(t), Eq.

(3.4.19), and carrying out the necessary time integration (see Appendix B).

The resulting general equation for the time-dependent velocity moments, using cumulant

notation*, is

wn (t) = w0
n e−nαt + rs

n (t) , (3.4.20)

where n = 1, 2,. . . , and w0 ≡ w(0). The resulting general expression for the time-

dependent moments of rs, using cumulant notation, is

rs
n (t) = Γn

nα
1 − e−nαt( ). (3.4.21)

Alternately, the moments and cumulants of w(t ) can also be determined from the

Kramers-Moyal expansion for P(w) instead of using the Langevin equation. The nth

moment of w can be determined by multiplying this Kramers-Moyal expansion by wn and

integrating over w from – ∞ to ∞ and assuming (i) the bn are not functions of w, and (ii)

Pw approaches zero faster than w approaches +∞ or –∞.

Now, from the well-mixed condition we know that an initially well-mixed tracer will

have the same velocity distribution, and, correspondingly, the same cumulants and

moments as the fluid at all times under stationary conditions. Therefore, under these

conditions the well-mixed condition requires that

wn (t) = w0
n = wf

n . (3.4.22)

*  The additivity property shown by Eqs. (3.4.19-20) is the main advantage which cumulants have over
moments: i.e., the nth cumulant of the sum of independent variables is equal to the sum of the nth
cumulants of the individual variables (Kalbfleisch, 1985).
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From Eq. (3.4.20), it can be seen that the cumulants of rs(t) that meet this constraint are

rs
n (t) = wf

n 1- e−nαt( ). (3.4.23)

From Eqs. (3.4.21) and (3.4.23) it can be seen that

wf
n = Γ n

nα
, (3.4.24)

or

Γ n = nα wf
n , n = 1, 2, . . . . (3.4.25)

For example, Γ1 = αwf = 0, Γ2 = 2αwf
2 ,  Γ3 = 3αwf

3 ,  Γ 4 = 4α wf
4 − 3wf

2 2( ),
Γ5 = 5α wf

5 −10wf
2 wf

3( ) , and Γ6 = 6α wf
6 −15wf

2 wf
4 −10wf

3 2
+ 30wf

2 3( ). So, the random

acceleration cumulant coefficients Γn  and the random velocity increment rs(t) are now

defined in terms of an infinite number of the fluid velocity cumulants (or moments).

The interpretation of the coefficient α in the deterministic acceleration can be seen from

the velocity autocorrelation function. Multiplying the velocity equation (3.4.19) by w0

and taking the ensemble average results in

w0w(t) = w0
2e−αt . (3.4.26)

It can then be seen that the coefficient α  is the inverse of the Lagrangian integral time

scale or Lagrangian correlation time, τ ,

α = 1
τ

, (3.4.27)

where τ is defined as follows:
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τ ≡
w0w(t)

0

∞

∫ dt

w0
2

. (3.4.28)

The linear-skewed model is now completely defined. Both the deterministic term’s α  and

the set of the random acceleration cumulant coefficients {Γn, n = 1, 2,. . . } are defined in

terms of obtainable (in principle) information, namely, the statistical properties of the

fluid velocity: the Lagrangian correlation time and the fluid velocity moments.

One of the desirable aspects of this linear-skewed model is that exact expressions for the

time-dependent position moments, zm (t), for the joint velocity-position moments,

wn (t)zm (t), and for the autocorrelation functions w0w
n (t) may be determined as well as

for the velocity moments, wn (t), given by the cumulants in Eq. (3.4.20) (under the

assumptions, stated above, that the turbulence is homogeneous and stationary, and in the

absence of boundaries). Some of these exact, analytic expressions are given in Appendix

B. In Chapter 4, we will use these to test numerical simulations using the linear-skewed

Langevin model.

In summary, this linear-skewed Langevin equation model assumes that the deterministic

acceleration is a simple, linear function of velocity, and that the random acceleration is

skewed. For homogeneous turbulence, this Langevin equation may be integrated

explicitly to determine an exact equation for the time-evolution of particle velocity,

w(t) = w0e
− t τ + rs (t) , (3.4.29)

where τ is the Lagrangian correlation time of the velocity, and rs (t) is a skewed random

variable with an infinite number of non-zero cumulants. Using the well-mixed condition,
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the statistical properties of rs (t) are uniquely defined in terms of an infinite number of

fluid velocity cumulants by Eq. (3.4.23).

3.4.5 Special case: Gaussian (unskewed) turbulence

For the special case in which the fluid velocity distribution, Pf (w), is Gaussian, and,

correspondingly, wf
n = 0 for   n = 3,  4,  5,  K  (e.g., skewness equals zero), both the

linear-skewed Langevin equation and the nonlinear-Gaussian Langevin equation collapse

to the Langevin equation with a linear deterministic acceleration and a Gaussian random

acceleration. This is the classic form of this equation used by Langevin. We shall call it

the linear-Gaussian Langevin equation. It is also known as the Ornstein-Uhlenbeck

process (Gardiner, 1990). In this case, the Langevin equation (3.2.1) may be integrated

explicitly (as in the case of the linear-skewed Langevin equation). The velocity equation

is

w(t) = w(0)e− t / τ + rg (t) , (3.4.30)

where rg (t)  is Gaussian with first two moments defined as follows:

rg (t) = 0, (3.4.31)

rg
2 (t) = wf

2 1 − e−2t / τ( ). (3.4.32)

A relationship between the Lagrangian correlation time scale, τ , the fluid velocity

variance, wf
2 , and the turbulent kinetic energy dissipation rate (per unit mass), ε , can be

obtained using the Lagrangian structure function for this Langevin equation and

Kolmogorov’s second similarity hypothesis (discussed in Chapter 2). The Langevin-

equation Lagrangian structure function for small time increment, δt,  is
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δw( )2 ≈
2wf

2

τ
δt , (3.4.33)

where δw = w(t + δt) − w(t). Consistency with the prediction of Kolmogorov’s second

similarity hypothesis for δt in the inertial subrange, given in Eq. (2.2.1), δw( )2 = C0εδt ,

implies that

C0ε =
2wf

2

τ
. (3.4.34)

This equation shows a relationship between the τ, wf
2 , and ε , for Gaussian turbulence. It

indicates that the Lagrangian velocity correlation time, τ , associated with the larger scale

motions, can, in general, also be thought of as a dissipation time scale for turbulent

kinetic energy associated with the larger, energy-containing scales of motion.

3.4.6  Deterministic acceleration, a(w), for the two Langevin equations

The deterministic acceleration, a(w), for the two forms of the Langevin equation –

defined using Eqs. (3.4.17) and (3.4.34), for the nonlinear-Gaussian Langevin equation,

and using Eqs. (3.4.18) and (3.4.27), for the linear-skewed Langevin equation – can now

be compared. The dimensionless deterministic acceleration for both models are plotted in

Fig. 3.1 for fluid velocity skewness S = 0.8.

For the linear-skewed model, a(w) always acts to slow the speed of the particle. In

contrast, the nonlinear a(w) will accelerate particles with velocities in the range

−0.5σw < w < 0 in the example shown in Fig. 3.1, where σw  is the standard deviation of

the fluid velocity. Also in contrast to the linear a(w), the magnitude of the nonlinear a(w)

does not increase monotonically with the magnitude of the w. In particular, it can be seen
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from Fig. 3.1 that for a range of w  values near + 0.5σw  particles with larger magnitude

velocities have a smaller magnitude deceleration.

-6 -4 -2 0 2 4 6

W

-6

-4

-2

0

2

4

6

8

A

Fig. 3.1. Dimensionless deterministic acceleration, A(W) = a(w)τ σw ,

versus dimensionless velocity W = w/σw  for linear-skewed Langevin

equation (dashed line) and nonlinear-Gaussian Langevin equation

(solid line) for fluid velocity skewness, S = 0.8.

3.5  Assumptions and justification of Langevin equation approach

The justification for the use of the Langevin equation rests solely on its ability to model

the statistical properties, observed and hypothesized, of the fluid velocity. Use of the

Langevin equation assumes that the time evolution of particle velocity can be modeled by

a stochastic process with weakly correlated acceleration, and in which the velocity is a

non-differentiable and (in one form of the Langevin equation) a discontinuous function of

time, t. This section discusses these assumptions, their implications, and their

justification.
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The Langevin equation assumes that the particle mean acceleration depends only on its

current velocity, and that the random acceleration is uncorrelated over any time period of

interest. This assumption that the future particle velocity depends simply on the current

velocity, and not the past history of the velocity is called the Markov assumption. These

assumptions are justified if the particle acceleration is weakly correlated in time. In large

Reynolds number flows, the acceleration is strongly correlated for times on the order of

and smaller than the Kolmogorov microscale, τη  (Monin and Yaglom, 1975, p. 370). As

discussed in Chapter 2, τη  is typically much less than a second in the atmospheric

boundary layer. For atmospheric dispersion problems, only times much greater than τη

are typically of interest, and the Markov assumption is justified.

The statistical properties of the change in velocity predicted by the Langevin equation

models over a small time interval can be compared to the predictions of Kolmogorov's

second hypothesis. As discussed in Chapter 2, Kolmogorov's second hypothesis implies

that ∆w( )n ∝ (ε∆t)
n

2   for even n, where τη << ∆t << τ , and ∆w( )n = 0 for odd n. As

discussed by Sawford & Borgas (1994), the nonlinear-Gaussian Langevin equation model

is consistent with these predictions. For this model, rG is Gaussian, and for ∆t << 1,

rG
2 = C0ε∆t . Therefore, for even n, ∆w( )n  = rG

n ∝ C0ε∆t( )n
2 , and the moments for odd n

are zero. In contrast, the linear-skewed Langevin equation model is not consistent with

Kolmogorov's second hypothesis predictions since, for ∆t << 1, ∆w( )n = rs
n = n wf

n ∆t

τ

for all n, as shown in Eq. (3.6.7).

The linear-skewed Langevin equation model does, however, result in reasonable

predictions of the velocity autocorrelation for time periods on the order of and smaller

than τ . A linear deterministic acceleration results in an exponential autocorrelation

function, c(t) = w0w(t) w0
2 = e− t / τ , as shown by Eqs. (3.4.26-27). The slope of this
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function is discontinuous and non-zero at t = 0, but the slope of c(t) should be continuous

and zero at t = 0, due to the inertia of fluid particles. Nevertheless, the exponential

autocorrelation function has the correct value of unity at t = 0, and, except for t τ <<1,

has been shown to be a very good approximation to observations and direct numerical

simulation results in homogeneous, isotropic, and stationary turbulence (Pope, 1994).

Hanna (1979) found it was a reasonable approximation for t < 2τ  using observations in

the unstable, daytime atmospheric boundary layer.

Both forms of the Langevin equation have the property that the velocity is not

differentiable with respect to time. Differentiable means the lim∆t→0 (∆w ∆t)  exists,

where ∆w = w(t + ∆t) − w(t) . The non-differentiable nature of the Langevin equation

velocity can be illustrated by using the Taylor series expansion of the linear-Gaussian

velocity equation, Eq. (3.4.30), which yields the following equation for the velocity

change, valid for ∆t / τ << 1:

∆w = − w(t)
τ

∆t +
2wf

2

τ










1
2

∆t
1

2ζ

where ζ is a Gaussian random variable with zero mean and variance of one. For non-zero

values of ζ ,  the lim∆t→0 ∆w ∆t( ) = ±∞, so the velocity is not differentiable.

The linear-skewed Langevin equation (and the corresponding Kramers-Moyal expansion)

has the property that the velocity is a discontinuous function of time in a probabilistic

sense (although the velocity does have a continuous range of values). This Langevin

equation describes what is called a "jump" Markov process. In contrast, the Gaussian-

random-acceleration Langevin equation (and the corresponding Fokker-Planck equation)

describe a "continuous" Markov process (Gardiner, 1990; Gillespie, 1992). If the velocity

is a continuous function of time, then the probability that w(t + ∆t) is finitely different
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from w(t) goes to zero faster than ∆t , as ∆t  goes to zero (Gardiner, 1990). The

discontinuous (according to this criterion) nature of the velocity for the skewed-random-

force Langevin equation, is illustrated in Appendix C using the linear-skewed Langevin

equation model. However, the velocity described by the linear-skewed Langevin equation

model is well behaved in the sense that it is mean-square continuous, i.e.,

lim∆t→0 ∆w2 = 0 , where ∆w = w(t + ∆t) − w(t) . In fact, all the moments of the velocity

change for the linear-skewed Langevin equation vanish for vanishing time step,

lim∆t→0 ∆wn (∆t) = 0 .

In summary, we expect that physically the fluid particle velocity is a differentiable and

continuous function of time, and that the acceleration is strongly correlated over very

small time intervals. However, this does not mean that the approximating stochastic

mathematical process (described by a form of the Langevin equation) need have these

properties. While some of the statistical properties of the change in velocity over short

time increments predicted by the different forms of the Langevin equation may be

physically unrealistic, as just discussed, the ensemble average properties (e.g., velocity

moments, autocorrelation) of the Langevin equation velocity are realistic. This makes

these equations useful for making predictions at the times of interest for atmospheric

dispersion problems.

3.6  Numerical simulation of w(t)

To perform numerical simulations of particle motion using the equations for the time

evolution of particle velocity, w(t), determined from the Langevin equation, we need a

method of obtaining random velocity increments, r(t), from a probability distribution,

P(r), with moments rn (t). For the nonlinear-Gaussian model, P(r) is Gaussian and the

first two moments of r  completely define this distribution (the third and higher order



52

cumulants are zero). However, for the linear-skewed model, P(r) is non-Gaussian and

the cumulants of all orders are non-zero.

3.6.1  Nonlinear-Gaussian Langevin equation model

The nonlinear-Gaussian Langevin equation model for the time evolution of velocity,

accurate to first order in ∆t , was defined in Section 3.4 by

w(t + ∆t) = w(t) + a w(t)( )∆t + rG (∆t), (3.6.1)

rG (∆t) = 0, (3.6.2)

rG
2 (∆t) =

2wf
2

τ
∆t (3.6.3)

where w(t+∆t) is the numerically-calculated velocity of a particle after time step ∆t given

velocity w(t) at the beginning of the time step, and the functional form for the nonlinear

a(w)  was defined in Eq. (3.4.17). Values of rG (∆t)  can be generated from a Gaussian

distribution using standard methods. Initial values of w are chosen from the bi-Gaussian

fluid velocity distribution given by Eqs. (3.4.10-16).

3.6.2  Linear-skewed Langevin equation model

For the linear skewed Langevin equation model, the statistical properties of rs (t) are

functions of an infinite number of fluid velocity moments. However, the velocity

moments of most fluids are not known with sufficient accuracy beyond the first few. This

is because the higher moments are highly dependent on the low-probability tails of the

velocity probability distribution where experimental statistics are poorest. However,
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information on only the first few velocity moments has been shown to explain tracer

dispersion in the CBL. For example, the first three velocity moments were used to define

the fluid velocity distribution for the nonlinear-Gaussian model above, and have been

used in most previous applications of Langevin equation models to CBL dispersion.

A practical difficulty, for the linear skewed model, is that even if all of the cumulants of

the fluid velocity were known, it is mathematically difficult (if not impossible) to obtain

P rs (t)( ) from an infinite number of cumulants. In addition, the form of P rs (t)( )
continually changes with time increment t , due to the time-dependent behavior of the

moments of P rs (t)( ) (see Eq. (3.4.23) and Appendix B). For example, the second and

third moments of rs (t), rs
2 (t)  and  rs

3(t) , are proportional to t at small t, and, therefore,

the skewness, rs
3(t) rs

2 (t)( )3
2
 is proportional to t

− 1
2. So, P rs (t)( ) becomes more highly

skewed as t decreases. Therefore, it does not seem possible to obtain an analytic form for

P(rs ) from which individual values of rs (t) can be selected in a numerical simulation.

(In contrast, for the nonlinear-Gaussian model, P(rG ) retains the same form, a Gaussian

distribution, for all t.)

This practical difficulty will be addressed by using a simple, known functional form,

Pa (rs ), as an approximation to the probability distribution P(rs ). Pa (rs ) will be defined

using the exact first three moments of rs. The higher moments (n = 4, 5, . . .) of rs(t) are,

then, defined from the functional form of Pa (rs ), and can be calculated. Through the

relationship (3.4.23) between the moments of rs(t) and wf, the higher moments of the fluid

velocity are, then, implicitly defined.

For the linear-skewed Langevin model, the equation we will use to numerically simulate

the particle velocity is



54

w(t + ∆t) = w(t)e−∆t τ + rsa (∆t), (3.6.4)

where w(t+∆t) is the numerically-calculated velocity of a particle after time step ∆t given

velocity w(t) at the beginning of the time step. rsa(∆t) is a random velocity increment

obtained from a probability distribution Pa (rs ) which has the first three moments which

are the same as the exact first three moments of rs(∆t),

rsa (∆t) = 0 , (3.6.5a)

rsa
2 (∆t) = wf

2 1 − e−2∆t / τ( ), and (3.6.5b)

rsa
3 (∆t) = wf

3 1 − e−3∆t / τ( ) (3.6.5c)

(see Appendix B). Eqs. ( 3.6.5a, b, and c) define Pa (rs ) since it will have a functional

form defined by the first three moments. Since the first three moments of w(t+∆t) depend

only on the first three moments of rs and w(t), this approximation is exact for the first

three moments of w.

The distribution Pa (rs ) that we use here is a combination of two overlapping uniform

probability distributions, and shall henceforth be referred to as a "double-block"

distribution. The form of this distribution and the determination of its parameters using

the known first three moments of r is given in Appendix C.

The higher moments of rsa resulting from Pa (rs ) for very small times, ∆t / τ << 1, are

rsa
n (∆t)∆t / τ <<1 =

wf
3( )n−2

wf
2( )n−3

4 3( )n−2

n + 1











∆t

τ
,  n = 4, 5, . . . . (3.6.6)
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(see Appendix C). Using (3.4.23), the moments of rs(∆t ) in terms of the fluid velocity

moments for very small times, ∆t / τ << 1, are

rs
n (∆t)∆t / τ <<1 = rs

n (∆t)
∆t / τ <<1

= Γn∆t = n wf
n ∆t

τ
, (3.6.7)

where n = 1, 2, . . . (note that the property that the moments of rs approach the cumulants

of rs for very small time was used in obtaining Eq. (3.6.7)). Equating (3.6.6) and (3.6.7),

i.e., rs
n (∆t)∆t / τ <<1 = rsa

n (∆t)∆t / τ <<1, we can now specify the higher fluid velocity cumulants,

wf
n =

wf
3( )n−2

wf
2( )n−3

4 3( )n−2

n n + 1( )








 ,  n = 4, 5, . . . . (3.6.8)

(the fourth through sixth velocity moments corresponding to this equation are given in

Appendix C). So, using this approach, the higher fluid velocity cumulants (and moments)

can be defined implicitly in terms of the first three fluid velocity moments. (Note: this is

also true of the non-linear Gaussian model described earlier, for which the parameters of

the bi-Gaussian velocity distribution were defined using the first three moments of the

fluid velocity and the remaining moments are defined implicitly.)

In general, Pa (rs ) is only an approximation to P(rs ), although they have the exact same

first three moments. For a finite time step there is numerical error in the higher (n ≥ 4)

moments of r s(∆t) and, correspondingly in the higher moments of w(t). However, the

higher (n ≥ 4) moments of wf have limiting values for small time step. These limiting

values are used to define the exact higher velocity moments for the linear-skewed

Langevin model. Then, for sufficiently small time steps (∆t / τ << 1), the numerical

simulation results will approach the exact solution.

This approach to simulating and defining the Langevin equation model has some

desirable aspects. First, we have a well-defined system with specified values for the
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random term coefficients {Γn} that are in agreement with the known turbulence properties

of the fluid, namely, the first few velocity moments. Second, the first three moments of

velocity can be simulated exactly for any time step, while the higher moments are exact

in the limit of small time steps.

In order to compare calculations made with this linear-skewed Langevin equation model

directly with those made with the nonlinear-Gaussian model described above, it would be

desirable to use the same fluid velocity distribution with both models. However, while the

first three moments of the fluid velocity distribution are explicitly specified for both these

models (and, therefore, can be made the same for both models), the higher moments are

only implicitly defined for both models. In addition, while the form of the fluid velocity

distribution is explicitly specified (the bi-Gaussian distribution) for the nonlinear-

Gaussian model, it is not specified for the linear-skewed model, rather, it is the result of

the chosen form of the Langevin equation.

3.7  Numerical simulation of z(t)

The velocity equation, w = dz dt , must be integrated to obtain an equation for the time

evolution of particle position. In integrating this equation, it is assumed that the particle

velocity varies linearly between the value calculated by the Langevin velocity equation at

the beginning of the time step, w(t), and the value at the end of the time step, w(t + ∆t).

This yields the following approximate position equation

z(t + ∆t) = z(t) + 1
2 w(t + ∆t) + w(t)[ ]∆t (3.7.1)

Eq. (3.7.1) results in a mean displacement that is correct through O(∆t2 ) , which is

z(t + ∆t) − z(t)[ ] = w(t)∆t − 1
2 a w(t)( )∆t2 + O ∆t3( ).
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(In contrast, the often-used first-order position equation, z(t + ∆t) = z(t) + w(t)∆t , results

in a mean displacement that is correct through O(∆t) .)

We now have methods for simulating the joint evolution of particle velocity and position,

(w(t), z(t)), and can calculate particle trajectories in (w, z) space in an unbounded flow (no

boundaries). A Monte Carlo simulation of a sample of N  independent particle trajectories

(each representing a realization from the ensemble of possible trajectories) can be used to

estimate ensemble average quantities such as position moments, velocity moments,

velocity autocorrelation, as well as velocity probability distributions and position

probability distributions (needed to calculate average air concentration). Next, we will

address the case of bounded flow, and the selection of new velocities when a boundary is

encountered.

3.8  Reflection boundary conditions

In a homogenous model, the interaction with boundaries must be treated with some type

of “reflection” of the vertical velocity. In the homogeneous, two-dimensional conceptual

model of the CBL that we are using, there are horizontal boundaries at the ground surface

and at the average height of the capping inversion, the horizontal mean wind is uniform,

and the statistical properties of the fluid vertical velocity fluctuations are homogeneous.

Consequently, this model does not resolve the variation of the statistical properties of the

fluid velocity in the surface layer near the bottom of the CBL and in the entrainment layer

near the top, and, correspondingly, does not model the details of possible trajectories in

these layers. Reflection boundary conditions for approximating the effect of interactions

with these layers were investigated. Three reflection boundary conditions were compared

in this work, one each in which the incident and reflected speeds are (I) positively

correlated, (II) negatively correlated and (III) uncorrelated.



58

Reflection methods that assume that the magnitude of the reflected vertical velocity is

positively correlated with the magnitude of the incident velocity have been used in all

previous Langevin equation models of dispersion in the CBL. In a homogeneous model,

this would imply that air approaching the surface from the mixed layer with a strong

downdraft velocity spends relatively little time near the surface, because it is given a

relatively strong updraft velocity when it encounters the surface and, given the long

velocity correlation time, is quickly returned to the mixed layer. The observed circulation

patterns in the CBL indicate that positively correlated incident and reflected speeds may

not be the best choice for a homogeneous model.

As discussed in Chapter 2 and by Williams and Hacker (1992, 1993), air in the core of a

strong downdraft region has relatively strong downward velocity, penetrates deep into the

surface layer, spreads out away from its center, and stays near the surface while it moves

horizontally toward convergence zones that feed the updrafts (thermals) in the mixed

layer. In contrast, air in relatively weak, smaller downdraft regions or near the edges of

strong downdraft regions has relatively weaker downward velocity, will approach the

surface closer to convergence zones, and is likely to be returned to the mixed layer faster.

The effect of the observed near-surface circulation patterns might be represented best by

a method using a reflected speed which is negatively correlated with the incident speed.

This would result in relatively fast descending particles being given a relatively low

magnitude reflected velocity when they encounter the surface, and remaining near the

surface for a longer time. In contrast, slower descending particles would be given a

relatively higher magnitude reflected velocity, and remain near the surface for a shorter

time.
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A third approach to reflection assumes that the reflected speed is uncorrelated with the

incident speed. In other words, a particle leaves the surface with no memory of its

incoming velocity. In a homogeneous model, this approach might be justified if mixed

layer downdrafts are not coupled with updrafts in a coherent circulation, and if turbulent

motions nearer the surface have very small velocity correlation times.

As discussed by Weil (1990), Wilson and Flesch (1993), Hurley and Physick (1993), and

Thomson and Montgomery (1994), reflection methods used previously in Langevin

equation simulations of CBL dispersion have been unable to maintain a well-mixed

position and velocity distribution in a skewed, homogenous turbulent fluid. However,

Thomson and Montgomery presented a sound basis for such methods, and successfully

tested one method versus the well-mixed condition in homogeneous, skewed turbulence.

Thomson and Montgomery (1994) based their approach to velocity reflection at

boundaries on the criterion that if a trace material is well mixed in a fluid it must remain

so. Based on this criterion, the joint velocity and position probability density function of

the tracer is, therefore, the same as that of the fluid, Pf (w, z). Thomson and Montgomery

(and also an anonymous reviewer of the paper by Hurley and Physick, 1993) recognized

that a well-mixed spatial and velocity distribution will be maintained if at the height of a

boundary, just as at any other height z , the ensemble-average flux of particles with

velocity in (w,  w + dw) through z  is proportional to

φ(w, z) ≡ wPf (w, z)dw .

φ(w, z) is the fraction of all particles (in an ensemble) with velocity in (w,  w + dw)

crossing z per unit time. Since we are assuming the velocity distribution is independent of

height so that Pf w,  z( ) = nf (z)Pf (w;  z) = nf (z)Pf (w), where nf (z)  and Pf (w) are the

fluid spatial and velocity distributions, respectively, this flux may be written as follows:
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 φ(w, z) = w nf (z)Pf (w)dw .

The probability density function for positive velocities crossing any height z  is

proportional to φ(w, z), and is

P+ (w) =
w nf (z)Pf (w)

w nf (z)Pf (w)dw
0

∞

∫
,

or

P+ (w) =
wPf (w)

wPf (w)dw
0

∞

∫
,    w > 0. (3.8.1)

Similarly, the probability density function for negative velocities crossing any height is

P− (w) =
wPf (w)

wPf (w)dw
−∞

0

∫
,    w < 0. (3.8.2)

The distributions P− (w) and P+ (w) can be used to describe the distribution of the

ensemble of incident and reflected velocities, respectively, at a lower boundary (the

reverse relationship holds at the upper boundary). However, they do not provide the

relationship between a specific wi  and the resultant wr . Any relationship between wi  and

wr  that results in these distributions will satisfy the well-mixed condition.

One method of implementing reflection, which will be referred to as reflection method I,

that results in a positive correlation between the magnitudes of wi  and wr , is to choose

wr  at the lower boundary, for example, such that

P+ (w)dw
0

wr

∫ = P− (w)dw
wi

0

∫ ,   wr > 0,   wi < 0, (3.8.3)
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for a given wi  < 0. This makes use of the fact that the incident particle velocities wi

crossing the boundary are distributed according to P− (w). If Pf (w) is Gaussian or any

other symmetric distribution, this method reduces to the simple, so-called perfect

reflection method: wr = −wi .

The net flux at the boundary must be zero. This means that

− φ(w, z)dw
−∞

0

∫ = φ(w, z)dw
0

∞

∫ .

Using the definition of φ(w, z), this becomes

− wPf (w)dw
−∞

0

∫ = wPf (w)dw
0

∞

∫ .

This criterion is met if the fluid velocity distribution has zero mean. If the mean velocity

is zero, then the normalizing constants for both P+  and P− , are the same, and reflection

method I, given in Eq. (3.8.3), simplifies to

wPf (w)dw
0

wr

∫ = − wPf (w)dw
wi

0

∫ ,  wr > 0,   wi < 0.

This is not the only method of selecting reflected velocities that are distributed according

to P± . Two other methods will be investigated. A method that results in a negative

correlation between the magnitude of wi  and wr , which we will refer to as reflection

method II, is to chose wr  such that at the lower boundary, for example,

P+ (w)dw
0

wr

∫ = P− (w)dw
−∞

wi

∫ ,  wr > 0,   wi < 0, (3.8.4)

Another method, reflection method III, is to randomly select a reflected velocity value

from the distribution P+  at the lower boundary (P−  at the upper boundary).
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It is convenient to introduce cumulative probability distribution functions defined as

follows:

F+ (w) = P+ (w+ )dw+
0

w

∫ ,     w > 0, and (3.8.5)

F− (w) = P− (w− )dw−
−∞

w

∫ ,      w < 0. (3.8.6)

The three reflection methods for selecting a new, reflected velocity wr  after a boundary is

encountered with incident velocity wi  can then be described as follows:

• Method I – Positively correlated wi  and wr  magnitudes

Lower boundary:

Given wi  < 0, select wr  > 0 such that F+ (wr ) = 1 − F− (wi ) (3.8.7)

Upper boundary:

Given wi  > 0, select wr  < 0 such that F− (wr ) = 1 − F+ (wi ) (3.8.8)

• Method II – Negatively correlated wi  and wr  magnitudes

Lower boundary:

Given wi  < 0, select wr  > 0 such that F+ (wr ) = F− (wi ) (3.8.9)

Upper boundary:

Given wi  > 0, select wr  < 0 such that F− (wr ) = F+ (wi ) (3.8.10)

• Method III – Random wr  chosen from P± (w)

Lower boundary:

Obtain uniform random number u on (0,1)

Select wr  such that F+ (wr ) = u (3.8.11)
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Upper boundary:

Obtain uniform random number u on (0,1)

Select wr  such that F− (wr ) = u (3.8.12)

If analytic expressions are available for Pf (w), F+ (w) and F− (w) it might be possible to

solve Eqs. (3.8.7-12) for wr  explicitly. For the linear-skewed Langevin model, we do not

have an analytic expression for Pf (w). For the nonlinear-Gaussian Langevin model, we

have an analytic, bi-Gaussian Pf (w), but it may not be possible to solve Eqs. (3.8.7-12)

explicitly for wr  (Hurley and Physick, 1993; Thomson and Montgomery, 1994).

To implement the reflection methods, we first construct tables of F+ (wj ) or F− (wj )

versus wj , for j = 1 to n bins, using Pf (w) calculated numerically from a Langevin

equation simulation. Given incident velocity wi , the corresponding value of F± (wi ) is

approximated by linear interpolation between the closest two table values. Then, using

the value of F± (wr ) determined from one of the three reflection methods, the reflected

velocity wr  is approximated by linear interpolation between table values. In the

numerical simulations performed in this work, tables were constructed of F− (w) versus

w  using n = 128 bins from w = −12σw  to  0 and of F+ (w) versus w  for n = 128 bins

from w = 0  to  + 12σw , using evenly spaced intervals of w.

In order to improve the numerical accuracy of the reflection calculation, over Thomson &

Montgomery's implementation, the time step was split at the point a boundary is

encountered. In this implementation, the following steps are used when a boundary in

encountered:

(1) Assuming the velocity varied linearly between w(t) and w(t + ∆t) during ∆t , the

incident velocity and time when a boundary was encountered are calculated.
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(2) The reflected velocity is calculated using method I, II or III.

(3) The Langevin velocity equation is used with the reflected velocity and the

remainder of the time step to re-compute the final velocity at the end of the time

step.

(4) The final position is calculated, starting at the boundary, by assuming the velocity

varied linearly between the reflected velocity and the final velocity over the

remainder of the time step.

In this method, particles follow curved (quadratic) z(t) trajectories, and are re-reflected if

they again encounter the boundary during the remainder of the time step.
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4

Model Evaluation

In this chapter, the two Langevin equation models and three reflection boundary

conditions presented in Chapter 3 are tested and evaluated. Results are presented from

simulations of idealized cases for which exact, analytic statistical properties of w and z

are known, including simulations of well-mixed spatial and velocity distributions. These

simulations are used to evaluate the statistical properties and numerical accuracy of the

models. Results are then presented from simulations of Willis and Deardorff’s laboratory

water tank experiments discussed in Chapter 2. These are used to test the ability of the

models to calculate dispersion in the convective boundary layer.

4.1  Tests in unbounded turbulence

The idealized case of dispersion in unbounded, stationary, homogeneous, skewed

turbulence was used to test the accuracy of numerical simulations versus several known

analytic results for the statistical properties of velocity and position, and to determine the

size of the numerical integration time step required for accurate solutions. One of these

analytic results is that if tracer particle initial velocities are distributed with the fluid

velocity distribution, Pf (w), then tracer particle velocity distribution will remain the

same as Pf (w) at all times, and, correspondingly, the tracer particle velocity moments

will remain the same as the ambient fluid velocity moments, wf
n , at all times. These

velocity moments are known for both the linear-skewed and nonlinear-Gaussian

Langevin equation models. In addition, for the nonlinear-Gaussian model, the velocity
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distribution Pf (w) is a known analytic function (the bi-Gaussian distribution given in

Chapter 3). For the linear-skewed model, there are also known analytic expressions for

the time-dependent position moments, joint velocity-position moments, and velocity

autocorrelation functions (given in Appendix B).

The sources of numerical error differ somewhat between the two Langevin equation

models. Error in the calculated velocity is introduced in simulations with the nonlinear-

Gaussian Langevin equation model because the approximate velocity update equation is

accurate only through O(∆t) , where ∆t  is the size of the numerical integration time step.

In this equation, both the deterministic term and the moments of the random term are

accurate through order O(∆t) . In contrast, the linear-skewed Langevin equation uses a

more accurate velocity equation, which is exact for the first three moments of velocity,

because the deterministic term and the first three moments of the random term are exact.

However, for a finite time step the linear-skewed model does yield error in the fourth and

higher moments, due to the approximate distribution used for the random velocity

increment, as discussed in Chapter 3. Error in the particle position (additional to the error

in the velocity) is introduced because of the approximate position update equation, which

is accurate through O(∆t2 )  for the mean displacement, as discussed in Chapter 3.

Simulations were performed assuming steady state conditions with no boundaries and a

skewed velocity distribution. Particle initial velocities were chosen from a fluid velocity

distribution, Pf (w), with zero mean, standard deviation σw , and skewness S ≡ wf
3 σw

3 = 1.

Particle positions were all initialized to z = 0. Trajectories, {(wi(t), zi(t)), i = 1,2, ...N}, for

N = 5 ×105  particles were calculated from t = 0 to 4τ . The results are presented in the

following dimensionless coordinates: T = t τ , W = w σw , and Z = z σwτ( ). Simulations

with different size time steps, ∆T  = 0.2, 0.05, and 0.01, were completed with each model

in order to determine the time step size required for accurate numerical solutions.
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For the nonlinear-Gaussian model, initial velocities were selected from the known bi-

Gaussian distribution for Pf (w). For the linear-skewed model, an analytic expression for

Pf (w) is not available from which to select initial velocities (although, analytic

expressions exist for all the moments). Therefore, initial guess velocity values with the

correct first three velocity moments were assigned using a double-block distribution, and

then adjusted using simulations with the linear-skewed velocity equation for a period of

2τ   (in retrospect, a period of 1τ    is sufficient) prior to the start of the simulations in order

to reach an initial velocity distribution as close as possible to the steady-state fluid

velocity distribution.

The velocity distributions calculated by the nonlinear-Gaussian model at T = 4 using

three different time steps, ∆T  = 0.2, 0.05, and 0.01 are shown in Fig. 4.1, along with the

exact, analytic distribution. The calculated velocity distributions for the unbounded case,

show a  strong time step dependence, due to the O(∆t)  velocity update equation. For ∆T

= 0.01, there is excellent agreement between the numerically-calculated distribution and

the exact distribution. There is a small departure from the correct velocity distribution

when ∆T  = 0.05, and large departures when ∆T  = 0.2.

The velocity distributions calculated by the linear-skewed Langevin equation model at T

= 4 using ∆T  = 0.2, 0.05, and 0.01 are shown in Fig. 4.2. The shape of this distribution

depends on the parameters, A and B , of the double-block distribution, Pa(rs), (see

Appendix C) used for the random term in the linear-skewed model's velocity equation.

Values of A = B = 1 were used because they resulted in reasonable agreement between

the model-predicted velocity distributions and the  measured  CBL  velocity  distributions
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Fig. 4.1. Dimensionless velocity distribution from nonlinear-Gaussian

model simulation at T= 4 using three different time steps, ∆T  = 0.2 (short-

dash line), 0.05 (dotted line), and 0.01 (solid line), along with analytic

velocity distribution (long-dash line), for the unbounded turbulence case.

Fig. 4.2. Dimensionless velocity distribution from linear-skewed model

simulation at T= 4 using three different time steps, ∆T  = 0.2 (short-dash

line), 0.05 (dotted line), and 0.01 (solid line), for the unbounded

turbulence case.
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(shown later in this chapter). There is very little difference in the velocity distributions

(Fig. 4.2) from the simulations using the three different time steps. This shows that the

numerical accuracy of the linear-skewed model velocity equation is significantly better

than the nonlinear-Gaussian model, as expected, because the linear-skewed model uses a

velocity equation exact for the first three velocity moments.

The departures in the higher moments of velocity, which are affected by small departures

in the tails of the distributions, are not easily detected in the curves in Figs. 4.1 and 4.2.

These departures can be seen directly in the numerically calculated higher moments.

Table 4.1 gives the values for the first six velocity moments calculated by the nonlinear-

Gaussian model at T = 4 using time steps of ∆T  = 0.2, 0.05, and 0.01, as well as the

corresponding exact values for the fluid velocity moments. Table 4.2 presents the same

results corresponding to the linear-skewed model. The first three moments are explicitly

controlled for both models, and have the same exact values. The values of the exact

fourth and higher moments, given in Tables 4.1 and 4.2, differ between the two models,

because they use different Pf (W)  distributions. For both models, decreasing the time step

has the expected effect of increasing the accuracy of the velocity moments calculated.

The nonlinear-Gaussian model requires smaller time steps than the linear-skewed model

to achieve comparable accuracy in the calculated velocity moments. For example, the

results in Table 4.2 show that for the largest time step used, ∆T  = 0.2, the linear-skewed

model's calculated first three moments are the same as the exact values, within the

statistical uncertainty (due to the finite number of particles used to estimate ensemble

averages) as measured by the standard error. The nonlinear-Gaussian model results in

Table 4.1 show that the smallest time step, ∆T  = 0.01, is required to obtain comparable

accuracy in the first three moments. For the fourth and higher moments of velocity, a
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time step of approximately ∆T  = 0.01 is  required to reduce the error to approximately

1% or less for both models.

Table 4.1. Dimensionless velocity moments (± standard error) calculated

using nonlinear-Gaussian Langevin equation model at dimensionless time

T= 4 from three simulations with S = 1 and three different time step values;

and exact fluid velocity moments.

Numerical  value Exact

∆t/τ = 0.2 ∆t/τ = 0.05 ∆t/τ = 0.01 value

W 0.094 ± 0.002 0.016 ± 0.001 0.003 ± 0.001 0.

W 2 1.179 ± 0.003 1.027 ± 0.002 1.004 ± 0.002 1.

W 3 1.182 ± 0.008 1.020 ± 0.007 1.001 ± 0.007 1.

W 4 4.867 ± 0.026 3.921 ± 0.023 3.777 ± 0.022 3.75

W 5 10.164 ± 0.097 8.432 ± 0.082 8.159 ± 0.078 8.125

W 6 35.772 ± 0.380 27.590 ± 0.325 26.296 ± 0.296 26.125

Table 4.2. Dimensionless velocity moments (± standard error) calculated

using linear-skewed Langevin equation model at dimensionless time T= 4

from three simulations with S = 1 and three different time step values; and

exact fluid velocity moments.

Numerical  value Exact

∆t/τ = 0.2 ∆t/τ = 0.05 ∆t/τ = 0.01 value

W 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.

W 2 1.002 ± 0.003 1.000 ± 0.003 0.999 ± 0.003 1.

W 3 1.012 ± 0.010 0.995 ± 0.010 0.995 ± 0.011 1.

W 4 4.711 ± 0.045 4.712 ± 0.047 4.780 ± 0.050 4.8

W 5 12.884 ± 0.233 13.022 ± 0.252 13.456 ± 0.283 13.6

W 6 53.421 ± 1.369 55.359 ± 1.532 58.790 ± 1.816 59.714

The time-step dependence of the fourth and higher moments calculated by the linear-

skewed model is evident in the results in Table 4.2. As discussed in Chap. 3, this is a

result of the fact that the fourth and higher cumulants of the random velocity increment in
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this Langevin equation model are not exact. However, from the values in Table 4.2, it can

be seen that the higher velocity moments quickly approach the limiting values (given in

Chapter 3) as the time step is decreased.

The model-predicted particle position distributions for the unbounded case were also

evaluated. Accurate prediction of position probability density is important because it is

proportional to concentration. Figure 4.3 shows the distribution of dimensionless particle

position, P(Z),  at T = 1 calculated by the nonlinear-Gaussian model using three different

time steps, ∆T  = 0.2, 0.05, and 0.01. Figure 4.4 shows the same for the linear-skewed

model. These distributions were calculated by sampling particle positions within bins of

width ∆Z = 0.25. For the nonlinear-Gaussian model, the distributions for the simulations

with the two smaller time steps, ∆T  = 0.05 and 0.01, show only small differences,

indicating the numerical solutions are converging at these time step values. For ∆T  = 0.2,

there are significant departures from the limiting distribution (for example, a 6%

difference between the peak probability of the ∆T  = 0.2 distribution and the ∆T  = 0.01

distribution). In contrast, for the linear-skewed Langevin equation model there is very

little change in the model simulated P(Z) distributions for the different time steps. This

again reflects the better numerical accuracy of the linear-skewed Langevin equation

model. These results indicate that the approximate position update equation used in both

these models is quite accurate at these time steps.

The effect of the positively-skewed velocity distribution is evident in the skewed position

distribution at T = 1 in Figs. 4.3 and 4.4. There is a larger positive-Z tail to the

distribution, and the mode of the distribution is negative. The difference in the shapes of

the P(Z) distributions reflects the different Pf (W)  distributions (shown in Figs. 4.1 and

4.2) used by the two models. However, the different forms of the Langevin equation used

in these models must also contribute to the difference.
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Fig. 4.3. Particle position distribution, P(Z), versus dimensionless

height, Z, at T= 1 from nonlinear-Gaussian model simulation using

three different time steps, ∆T  = 0.2 (dashed line), 0.05 (dotted

line), and 0.01 (solid line), for the unbounded turbulence case.

Fig. 4.4. Same as Fig. 4.3, except from linear-skewed model

simulation.
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The mean fluid velocity is zero, so the mean position should remain zero in these

simulations.  For the nonlinear-Gaussian model, Fig. 4.5 shows that the numerical error in

the mean position is probably acceptable for ∆T  = 0.05. The error in the mean position is

at least partially due to error in the mean velocity (noted above) for the nonlinear-

Gaussian model. For ∆T  = 0.01, the error is extremely small. For ∆T  = 0.2, it is much

larger.

Fig. 4.5. Particle dimensionless mean position, Z(T ) − Z(0)( ) , as a

function of dimensionless time, T, from the nonlinear-Gaussian model

simulations using three different time steps, ∆T  = 0.2 (dashed line), 0.05

(dotted line), and 0.01 (solid line), for the unbounded turbulence case.

For the linear-skewed model, position moments can be calculated analytically and used to

evaluate the model results. Figure 4.6 shows the dimensionless mean position,

Z(T ) − Z(0)( ) ; standard deviation, σZ ≡ Z(T ) − Z(0)( )2
1

2
; and third moment,

Z(T ) − Z(0)( )3 , as a function of T from the linear-skewed model simulation with time

step ∆T  = 0.2, along with the corresponding analytic solutions (see Appendix A). Fig.

4.6 shows there is excellent agreement between the numerical and analytic results even

for the longest time step used.
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Fig. 4.6. Mean, standard deviation and third moment (about initial position) of
dimensionless particle position as a function of dimensionless time, T, from the
linear-skewed model simulation with time step ∆T  = 0.2 (dashed line), and the
corresponding analytic values (solid line) for the unbounded turbulence case.
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For the linear-skewed model,  there are also analytic solutions for velocity autocorrelation

functions and joint velocity-position moments (see Appendix A), and these were used to

further evaluate this model. Fig. 4.7 shows plots of three velocity autocorrelation

functions, W(T )W(0), W 2 (T )W(0), and W 3(T )W(0), as a function of T from the linear-

skewed model simulation with time step ∆T  = 0.05, along with the corresponding

analytic functions. There is excellent agreement between the numerical and analytic

results. (This is true for ∆T  = 0.2 also, except for a small departure from the analytic

curve for W 3(T )W(0), which depends on the fourth moment of velocity.) Fig. 4.8 shows

plots of the three velocity-position joint moments, W(T ) Z(T ) − Z(0)( ) ,

W 2 (T ) Z(T ) − Z(0)( ) , and W(T ) Z(T ) − Z(0)( )2 , as a function of T from the linear-

skewed model simulation with time step ∆T  = 0.2, along with the corresponding analytic

functions. These results show the model is accurately simulating the evolution of particle

velocity and position as measured by these autocorrelation functions and joint moments.

In summary, both Langevin equation models can accurately simulate known statistical

properties of velocity and position for this unbounded case if sufficiently small time steps

are used. Results of tests varying the size of the numerical integration time step reflect the

increased accuracy of the velocity update equation in the linear-skewed model, compared

to the nonlinear-Gaussian model. For linear-skewed model simulations, a time step of

∆T  = 0.2 results in negligible error in the velocity and position distributions for this

unbounded case. For nonlinear-Gaussian model simulations, a time step of ∆T  = 0.05

results in acceptable error.
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Fig. 4.7. Velocity autocorrelation functions, W(T )W(0), W 2 (T )W(0), and

W 3(T )W(0), as a function of T from the linear-skewed model simulation
with time step ∆T  = 0.05 (dashed line), along with the corresponding
analytic functions (solid line) for the unbounded turbulence case.
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Fig. 4.8. Velocity-posit ion joint moments, W(T ) Z(T ) − Z(0)( ) ,

W 2 (T ) Z(T ) − Z(0)( ) , and W(T ) Z(T ) − Z(0)( )2 , as a function of T from the
linear-skewed model simulation with time step ∆T  = 0.2 (dashed line), along with
the corresponding analytic functions (solid line) for the unbounded turbulence
case.
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4.2  Well-mixed tests in bounded turbulence

Each of the three reflection boundary conditions discussed in Chapter 3, and both

Langevin equation models, were tested to determine the time step required for accurate

numerical simulations of well-mixed spatial and velocity distributions in an idealized

homogeneous, stationary, skewed, bounded flow. The presence of boundaries introduces

additional sources of numerical error (in addition to those discussed in Section 4.1)

because the incident velocity is calculated by using an approximation that the velocity

varies linearly in time over the time step in which the boundary is encountered, and

because the reflected velocity is determined using an approximate table look-up method,

as described in Chapter 3.

Simulations were performed in which particle velocities were initialized, as in the

unbounded simulations above, from a fluid velocity distribution having a skewness S = 1.

Initial positions were distributed uniformly between boundaries at z = 0  and z = h . A

Lagrangian time scale value of τ = 0.5(h / σw )  was used. Simulations were performed for

a time period of 2(h / σw ). The results from these simulations will be presented in the

following dimensionless coordinates: T = tσw h , W = w σw , and Z = z h . In these

simulations, N = 5 ×105  particles were used. Position distributions were calculated using

20 bins between the top and bottom boundary, and were averaged from T = 0.5 to 2.

To determine tables of F+ (w) and F− (w) used in the reflection methods described

Chapter 3, a preliminary simulation was performed for a period of (h / σw ) before the

start of final simulation from T = 0 to 2. The average velocity distribution over this period

was used to compute tables of F+ (w) and F− (w). The resulting initial P(w) was

approximate, just as the velocity distribution is at any time after a steady state is reached

in a numerical simulation.
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Particle position distributions, P(Z) , from simulations with different size time steps, ∆t  =

0.01τ , 0.05τ  and 0.2τ , were completed using both models in order to determine the

time step size required for accurate numerical solutions. Fig. 4.9 shows the results for

reflection method III (results from simulations using the other two reflection methods

were similar) and the nonlinear-Gaussian model using ∆t  = 0.05τ  and 0.2τ . These

results show that a time step of ∆t  = 0.05τ  results in error in the position distribution of

less than 3% (the correct uniform position distribution is P(Z) = 1), while for ∆t  = 0.2τ ,

there is error of up to approximately 10%. For the linear-skewed model simulations using

reflection method III, Fig. 4.10 shows that there are only minor departures of less than

1% from the correct uniform distribution, for both ∆t  = 0.2τ  and 0.05τ . The better

accuracy of the linear-skewed model results, compared to the nonlinear-Gaussian model,

is, again, an indication of the smaller numerical error in the linear-skewed model velocity

update equation.

The initial and final velocity distributions, P(W), from simulations using ∆t  = 0.05τ

were compared to determine if the steady-state velocity distribution is maintained. Figs.

4.11 and 4.12 show that for ∆t  = 0.05τ  and reflection method III (similar results were

obtained with the other two reflection methods), both models maintain the initial velocity

distribution very well.

Figs. 4.13 and 4.14 show well-mixed test results for the two models and for all three

reflection methods using a time step ∆t  = 0.05τ . The nonlinear-Gaussian model results

in Fig. 4.13 show that the departures from the well-mixed spatial distribution are less than

approximately 3% for this time step. For the linear-skewed model, Fig. 4.14 shows that

all three reflection methods result in departures of approximately 1% or less for this time

step. Results from simulations using a smaller time step, ∆t  = 0.01τ , (not shown)
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produced excellent results, with less than 0.5% departure from the well-mixed spatial

distribution for both models and all three reflection methods.

Figure 4.9. Position distributions, P(Z), from two nonlinear-

Gaussian model simulations of a well-mixed distribution

using numerical time steps of ∆t  = 0.2τ  (dashed line) and

0.05τ  (solid line), and reflection method III.

Figure 4.10. Same as Fig. 4.9, except from linear-skewed

model.
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Figure 4.11. Velocity distributions, P(W), at T = 0 (solid line) and

T = 2 (dashed line) from nonlinear-Gaussian model simulation of a

well-mixed distribution using reflection method III and numerical

time step of ∆t  = 0.05τ .

Figure 4.12. Same as Fig. 4.11, except for linear-skewed model

simulation.



82

Figure 4.13. Position distributions, P(Z), from three nonlinear-Gaussian

model simulations of a well-mixed distribution using reflection method I

(solid line), method II (dotted line) and method III (dashed line), and

numerical time step of ∆t  = 0.05τ .

Figure 4.14. Same as Fig. 4.13, except from three linear-skewed model

simulations.
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In summary, both Langevin models and all three reflection methods can maintain well-

mixed spatial and velocity distributions. For nonlinear-Gaussian model simulations,

numerical error in the spatial distribution is acceptably small (less than 3%) when a time

step of ∆t  = 0.05τ  is used. The linear-skewed model again exhibited better numerical

accuracy than the nonlinear-Gaussian model for the same time step. For linear-skewed

model simulations, numerical error in the spatial distribution is acceptably small (1% or

less) for time steps as large as ∆t  = 0.2τ .

4.3  CBL simulation

Willis and Deardorff's laboratory experiments, discussed in Chapter 2, were used to

evaluate the ability of the two homogeneous Langevin equation models and three

reflection methods to simulate vertical dispersion in the CBL. This experimental dataset

was used because it is unique in that (a) detailed measurements of both the tracer

concentration field (Willis and Deardorff, 1976a, 1976b, 1978 & 1981) and the fluid

velocity statistics (Deardorff and Willis, 1985) were made, and (b) ensemble averages

were computed from several experiments under the same conditions. In addition, the

Willis and Deardorff experimental results have been found to be in substantial agreement

with both numerical and field experiments (Briggs, 1993b).

Section 4.3.1, presents the two-dimensional conceptual model that will be used in

simulations of the CBL. In section 4.3.2, Deardorff and Willis' measured vertical velocity

distributions will be used to determine the fluid velocity variance and skewness needed as

input to the models, and to evaluate the Langevin equation models' simulated velocity

distributions. Section 4.3.3 discusses the estimation of the Lagrangian velocity correlation

time. In section 4.3.4, Willis and Deardorff’s tracer dispersion measurements will be used

as an indirect method of evaluating the modeled velocity distributions and the other
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modeling assumptions: i.e., the form of the Langevin equation and the reflection

boundary conditions. (As discussed in Chapter 3, a controlled comparison of the effects

of the different forms of the Langevin equation alone would require the same velocity

distribution be used for both models. However, while the first three moments of the

distribution can be made the same, it is not clear how the velocity distributions can be

made the same for both types of Langevin models.) Section 4.3.5 presents a discussion of

the sensitivity of the simulation results to the values of the input parameters.

4.3.1  Two-dimensional conceptual model

A simplified 2-D conceptual model of vertical dispersion and horizontal mean wind

advection in the CBL is used in this work. As discussed in Chapters 2 and 3, in this

model it is assumed that there is (1) a horizontal, impermeable boundary at the average

height of the capping inversion (z = h), (2) a horizontal, impermeable boundary at the

surface (z = 0), (3) a uniform horizontal (x direction) mean wind, and (4) velocity

fluctuation only in the vertical velocity component, w. The last two assumptions are

consistent with Willis and Deardorff's transformation of their dispersion observations. In

addition, we assume that the statistical properties of the fluid vertical velocity fluctuations

are homogeneous, and that mixed-layer scaling of the vertical velocity statistics is valid.

This conceptual model can be used to simplify the expression for the cross-wind-

integrated air concentration. Using Eq. (3.1.1), the ensemble-mean cross-wind-integrated

air concentration, c(x, z,t) , can be expressed as follows:

c(x, z,t)= dt0 dz0 dx0

−∞

∞

∫ q(x0 , z0 ,t0 )P(x, z,t  ; x0 ,
−∞

∞

∫
−∞

t

∫ z0 ,t0 ) , (4.3.1)
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For a continuous point source, q(x0 , z0 ,t0 ) =  Qδ x0 − xs( )δ z0 − zs( ) , where Q is the

source strength (mass emitted per unit time) and xs , zs( ) is the location of the source. Eq.

(4.3.1), then, simplifies to

c(x, z,t)= Q dt0P(x, z,t  ; xs ,
−∞

t

∫ zs ,t0 ). (4.3.2)

Displacements in the x and z directions are assumed to be independent, therefore

P(x, z,t) = P(x,t)P(z,t) . Displacements in the x  direction are assumed to be due only to

the mean wind velocity, and, therefore, P(x,t;  xs ,t0 ) = δ (x − xs ) − U(t − t0 )( ) . Using

these assumptions and transforming to relative spatial coordinates x̂ = x − xs  and

ẑ = z − zs  and time coordinate t̂ = x̂

U
 (downwind travel time from the source), Eq. (4.3.2)

simplifies to

c( x̂, ẑ) = Q

U
P(ẑ, t̂ ) . (4.3.3)

The Langevin equation models described in Chapter 3 are used to calculate the time

evolution of particle velocity, w(t), and position, z(t). Monte Carlo simulations of a

sample of N particle trajectories,   zi (t),  i = 1,2,K N{ }, will be used to estimate P(ẑ, t̂ ),

and, through Eq. (4.3.3), c( x̂, ẑ).

Mixed-layer scaling parameters (boundary layer depth, h, and convective velocity scale,

w* ) are used to scale the numerical simulation results, as done by Willis and Deardorff for

their experimental results. Results are presented as functions of the following

dimensionless variables: downwind distance X = x̂w* Uh , velocity W = w w* , and

height Z = z h . Since the mean horizontal wind velocity, U, is assumed to be constant,

dimensionless downwind distance X is the same as dimensionless downwind travel time

t̂w* h . The cross-wind-integrated concentration is made dimensionless by scaling it by
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the concentration that would be found if material were uniformly distributed in the

vertical, C = cUh Q.

4.3.2  Vertical velocity distribution

The observed dimensionless vertical velocity distributions, Pf (W) , published by

Deardorff and Willis (1985) were analyzed to determine velocity variance and skewness

used as input to the Langevin equation models. The Pf (W)  curves for various heights

published in Deardorff and Willis' Fig. 16 were digitized and used to compute the

variance and skewness. The probability of the highest-W (W ≈ 1.95) point plotted in these

curves (the histogram bin at the end of the positive tail of the distribution) included the

probability of that bin and all higher W values (as a result, the probability density

unrealistically increased with W at the end of the positive-W tail of the distribution

plotted in the figure). Therefore, this probability value was lowered by multiplying it by

1
4 . The remainder was distributed uniformly between W = 2.015 and W = 2.535. Small

adjustments were then made to this data to ensure that the mean velocity was zero and the

total probability equaled one. However, all of these adjustments to the digitized data did

not significantly change the values of the velocity moments calculated. The values

calculated were very similar to those calculated by M.F. Hibberd (personal

communication, 1997) from these same published curves.

Table 4.3 lists the dimensionless velocity statistics calculated from the Deardorff and

Willis (1985) velocity distribution curves. At each dimensionless height, Z= z h,

dimensionless values are given for the velocity variance, σw f

2 w*
2 ; velocity skewness S;

probability of negative velocity, P− ; probability of positive velocity, P+ ; mean negative

velocity, w− w* ; mean positive velocity, w+ w* ; variance of negative velocity, σw−

2 w*
2 ;

and variance of positive velocity, σw+

2 w*
2 .
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Table 4.3. Dimensionless velocity statistics versus dimensionless height, calculated from

velocity distributions published by Deardorff and Willis (1985) .
z

h
σw f

2

w*
2 S P− P+

w−

w*

w+

w*

σw−

2

w*
2

σw+

2

w*
2

0.21 0.315 0.428 0.58 0.42 –0.39 0.53 0.086 0.14

0.40 0.376 0.731 0.62 0.38 –0.39 0.64 0.080 0.20

0.48 0.350 0.798 0.53 0.47 –0.43 0.49 0.064 0.23

0.62 0.397 0.814 0.61 0.39 –0.40 0.63 0.088 0.24

0.79 0.233 1.250 0.53 0.47 –0.34 0.38 0.038 0.18

0.89 0.210 0.640 0.60 0.40 –0.29 0.43 0.064 0.12

Deardorff and Willis also plotted measured values of variance (in their Fig. 4) and third

moment of velocity (in their Fig. 15). The variance values are similar but not identical to

those calculated from their Fig. 16 and listed in Table 4.3 here. The skewness

corresponding to the third moment values from Deardorff and Willis' Fig. 15 are

significantly higher than those listed in Table 4.3, even though Deardorff and Willis

stated that they were calculated from the same data plotted in their Fig. 16. The original

investigator did not recall any possible explanations for these differences (J.W. Deardorff,

personal communication, 1997).

The variance and skewness values in Table 4.3 were used in this work. They are

consistent with other published values for the CBL (see Luhar et al.,  1996, for a review).

Velocity variance and skewness values for use in homogeneous Langevin equation model

simulations were obtained by averaging the values in Table 4.3. The resulting average

values of σw f

2 w*
2 = 0.31 and S = wf

3 / σw f

3 = 0.78 were used in this work. The sensitivity

of the dispersion simulation results to the choice of values for these parameters will be

discussed later in this chapter.
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Velocity distributions from simulations with both Langevin models using these average

variance and skewness values were compared to the measured velocity distributions

published by Deardorff and Willis (1985). Figs. 4.15 and 4.16 show the velocity

distribution resulting from the simulations with the nonlinear-Gaussian model and linear-

skewed model, respectively, along with the measured distributions published by

Deardorff and Willis for three different heights. These calculated distributions are

averaged over a period of 5τ from simulations without boundaries using ∆t  = 0.05τ  (for

the nonlinear-Gaussian, this time step results in small departures from the analytic

velocity distribution, as noted in Sec. 4.1 above). Compared to the measured velocity

distributions, the calculated distributions in Figs. 4.15 and 4.16 both appear to be

reasonable representations.

4.3.3  Lagrangian correlation time

Lagrangian velocity statistics and correlation time scale, τ , are typically not measured.

This is true of the Willis and Deardorff experiments. Estimates of τ  are typically made

with indirect methods, in which best fit values are determined by comparing model

predictions to experimental dispersion measurements. The relationship τ = 2σw
2 C0ε ,

presented in Chapter 3, is often used to estimate τ along with measurements and/or

parameterizations of σw
2  and ε . However, even if σw

2  and ε  are known there is

uncertainty in the value of C0 .

Estimates of the value of C0  range from 2 to 10, with some of the latest near 3 (Du et al.,

1995). Sawford (1993) proposed that part of this variation in estimates of C0  is due to the

fact that C0  has been estimated indirectly using data from experiments (for example, the

Willis and Deardorff experiments) in which the Reynolds number was not large enough

to reach the large Reynolds number limit, for which C0  is truly a universal constant.
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Previous Langevin equation modeling studies using the Willis and Deardorff experiments

typically used C0  = 2 (e.g., Luhar and Britter, 1989; Weil, 1989).

Fig. 4.15. Dimensionless velocity distribution from the nonlinear-
Gaussian model simulation (solid line) along with the velocity
distributions observed by Deardorff and Willis (1985) at Z=0.21 (dotted
line), Z=0.48 (dash-dot line), and Z=0.79 (dashed line).

Fig. 4.16. Same as Fig. 4.15, but from linear-skewed model simulation.
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The height averaged value of the turbulent kinetic energy dissipation rate data published

by Deardorff and Willis (1985) is approximately ε = 0.4 w*
3 h( ). Using the average value

of σw
2 = 0.31w*

2  determined above from the same study and C0  = 2, this corresponds to a

value of τ = 0.8(h / w* ) . This value was used in this work. The sensitivity of the

dispersion simulations to the value of τ  will be discussed below.

4.3.4  Cross-wind-integrated concentration

Simulations of dispersion for the Willis and Deardorff experiments were made with both

Langevin equation models. Simulations were performed with each model using each of

the three reflection methods (the same reflection method was applied at both the top and

bottom boundaries, although they could be different, e.g., negatively correlated incident

and reflected speed at the bottom, positively correlated at the top). A time step of

∆t = 0.05τ ; 105 particles (sensitivity tests with 5 × 105 particles did not result in

noticeable differences in the concentration distribution) and 20 vertical particle-position

sampling bins were used in each simulation.

For comparison with the numerical simulation results below, Fig. 4.17 shows contours of

the dimensionless cross-wind-integrated concentration, C(X, Z), versus dimensionless

height, Z, and downwind distance, X, determined from Willis and Deardorff’s (1976b,

1978 and 1981) laboratory experiment observations for three dimensionless source

heights: (a) Zs  = 0.067, (b) Zs  = 0.24, and (c) Zs  = 0.49.

Contours of cross-wind-integrated concentration C(X, Z) calculated by the nonlinear-

Gaussian model for all three source heights using the three reflection methods are

presented in Fig. 4.18 (reflection method I), Fig. 4.19 (method II) and Fig. 4.20 (method

III). Contours of C(X, Z) calculated using the linear-skewed model are shown in Fig.

4.21 (reflection method I), Fig. 4.22 (method II) and Fig. 4.23 (method III).
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Fig. 4.17. Smoothed contours of dimensionless cross-wind-integrated concentration,
C(X, Z), versus dimensionless height, Z, and downwind distance, X, from Willis &
Deardorff (1976b, 1978, 1981) laboratory experiments for dimensionless source heights
of (a) Zs=0.067 (top figure), (b) Zs=0.24 (middle), and (c) Zs=0.49 (bottom). Arrows
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For both Langevin models, the choice of reflection boundary condition has the largest

effect on the simulations for the source height closest to the boundary (Zs=0.067), as

might be expected. For Zs=0.067, the simulations with reflection method II (shown in

Fig. 4.19 for the nonlinear-Gaussian model, and in Fig. 4.22 for the linear-skewed model)

produce initial (X < 1) concentrations patterns that are in noticeably better agreement with

the observed patterns (shown in Fig. 4.17) than the simulations with reflection method I.

For all source heights, reflection method II (negatively-correlated-speed reflection)

appears to simulate the near-surface concentration more accurately than the other two

reflection methods. The results of simulations with reflection method III are intermediate

between those of reflection methods I and II.

For both Langevin equation models, reflection method II is better able to simulate the

observed behavior of the maximum concentration line than the other two reflection

methods. The observed height of the maximum concentration remains near the surface for

a time after it first encounters the surface, and, then, increases in height. For Zs  = 0.067

and 0.24, the experimentally observed maximum concentration line stays near the surface

for a distance, ∆X , of approximately 0.3 to 0.4 after it encounters the surface, and then

increases in height (see observed C(X, Z) contours in Figs. 4.17a and 4.17b). For Zs  =

0.49, this distance is approximately ∆X = 0.2 (see Fig. 4.17c) and is associated with a

secondary maximum in the observed near-surface concentration near X = 0.8, after which

the height of maximum concentration increases with X. These observed features are

simulated best by reflection method II for both Langevin models (see Figs. 4.19 and

4.22). The linear-skewed model using reflection method II is best able to simulate the

increasing height of the maximum concentration with downwind distance after it reaches

the surface (Figs. 4.22a, b & c).
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Fig. 4.18. Contours of dimensionless cross-wind-integrated concentration,
C(X,Z), versus dimensionless height, Z, and downwind distance, X, from
nonlinear Gaussian Langevin equation model, reflection method I simulations of the
Willis & Deardorff experiments for dimensionless source heights (a) Zs=0.067 (top
figure), (b) Zs=0.24 (middle), and (c) Zs=0.49 (bottom).
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Fig. 4.19. Same as Fig. 4.18, except from nonlinear-Gaussian Langevin equation
model, reflection method II simulations.
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Fig. 4.20. Same as Fig. 4.18, except from nonlinear-Gaussian Langevin equation
model, reflection method III simulations.
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Fig. 4.21. Same as Fig. 4.18, except from linear-skewed Langevin equation
model, reflection method I  simulations.
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Fig. 4.22. Same as Fig. 4.18, except from linear skewed Langevin equation model,
reflection method II simulations.
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Fig. 4.23. Same as Fig. 4.18, except from linear-skewed Langevin equation
model, reflection method III simulations.
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The calculated concentrations shown in Figs. 4.18-23 approach a uniform distribution, C

= 1, for large X. This is the correct behavior when fixed, impermeable boundaries are

used at both the top and the bottom of the boundary layer, as in these calculations. In

effect, this results in concentration changing discontinuously at the boundary layer height

(Z = 1). In the CBL, concentrations decrease smoothly with height over the entrainment

layer (roughly 0.8 < Z < 1.2) as seen in Fig. 4.17. Correspondingly, while the calculated

concentrations approach C = 1 at Z = 1 for large X, the observed concentrations in the

Willis and Deardorff experiments approach approximately C = 0.5 at Z = 1. Near the top

of the boundary layer, the nonlinear-Gaussian model results (Figs. 4.18-20) show overly

high concentrations for all three reflection methods. Possible reasons for these overly

high concentrations will be discussed in Section 4.3.6. Overly high concentrations are not

present at the top of the boundary layer in the linear-skewed model results (Figs. 4.21-

23).

Dimensionless near-surface concentration versus downwind distance, C(X,0), from

simulations using the nonlinear-Gaussian model and the three reflection methods is

compared to observations from the Willis and Deardorff experiments in Fig. 4.24. The

mean square error of this nonlinear-Gaussian model simulated near-surface concentration

is plotted in Fig. 4.25 for each reflection method and each source height. The mean

square error (MSE) is defined here as MSE = 1
nobs

(pi − oi )
2

i=1

nobs

∑ , where oi is a observed

value, pi is the model predicted value interpolated to the point of the observation, and nobs

is the number of observations. The standard error of the MSE (a measure of the

uncertainty in the estimate of the MSE) is shown as error bars in Fig. 4.25. A similar

comparison of the linear-skewed model simulation results to observations is show in Fig.

4.26. The MSE of these linear-skewed model results is plotted in Fig. 4.27.
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For both models, the choice of reflection method can noticeably affect near-surface

concentration. The best overall results are obtained using reflection method II for both

models. However, changing the reflection method results in more significant changes in

the linear-skewed model results (Fig. 4.27) than in the nonlinear-Gaussian model results

(Fig. 4.25). The linear-skewed model and reflection method II results (shown in Fig. 4.26,

dotted line) show the best overall agreement with the experimental observations for near-

surface concentration. This can be seen in the lower mean square error values  (shown in

Fig. 4.27) for the linear-skewed/reflection-method-II (LS/II) simulation results. For Zs  =

0.49, the linear-skewed model predicts the location of the peak concentration better than

the nonlinear-Gaussian model, and also better than previous inhomogeneous Langevin

equation model simulations summarized by Du et al. (1994). For both Langevin models,

reflection method I results in the poorest agreement overall.

Dimensionless mean height of the concentration distribution, Z , versus downwind

distance from simulations using the nonlinear-Gaussian model and the three reflection

methods is compared to observations from the Willis and Deardorff experiments in Fig.

4.28. The mean square error of the nonlinear-Gaussian model simulated Z  is plotted in

Fig. 4.29 for each reflection method and each source height. Fig. 4.30 shows the same

comparison using the linear-skewed model. The MSE of these linear-skewed model

results are plotted in Fig. 4.31. The choice of model and reflection method has the largest

effect when the release is closest to the lower boundary, Zs= 0.067. For Zs= 0.067,

reflection method II significantly improves the results compared to reflection method I

for both models. The nonlinear-Gaussian model results are closer to the observations than

the linear-skewed model results for Zs= 0.067. For Zs  = 0.24, both models perform well,

with the choice of reflection method causing only small differences. For Zs  = 0.49, the

nonlinear-Gaussian model performs better and the choice of reflection method has little

effect.
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Fig. 4.24. Calculations of dimensionless near-ground concentration for
dimensionless source height of (a) Zs  = 0.067 (top figure), (b) Zs  = 0.24
(middle), and (c) Zs  = 0.49 (bottom) using the nonlinear-Gaussian Langevin
equation model and the three reflection methods: method I (solid line), method
II (dotted line), method III (dashed line). Circles are data from Willis &
Deardorff experiments.
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Fig. 4.25. Mean square error (MSE) of dimensionless near-ground
concentration predicted by the nonlinear-Gaussian  (NG) Langevin
equation model using reflection methods I, II, and III, estimated
using observations from the Willis & Deardorff experiments for
dimensionless source height of (a) Zs =0.067 (top figure), (b) Zs
=0.24 (middle), and (c) Zs =0.49 (bottom). Error bars indicate
plus and minus standard error.
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Fig. 4.26. Same as Fig. 4.24, except using the linear-skewed Langevin
equation model.
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Fig. 4.27. Mean square error (MSE) of dimensionless near-ground
concentration predicted by the linear-skewed  (LS) Langevin
equation model using reflection methods I, II, and III, estimated
using observations from the Willis & Deardorff experiments for
dimensionless source height of (a) Zs =0.067 (top figure), (b) Zs
=0.24 (middle), and (c) Zs =0.49 (bottom). Error bars indicate
plus and minus standard error.
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Fig. 4.28. Calculations of dimensionless mean height of concentration
distribution for dimensionless source height of (a)  Zs =0.067 (top figure), (b)
Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the nonlinear-Gaussian
Langevin equation model and the three reflection methods: method I (solid line),
method II (dotted line), method III (dashed line). Circles are data from Willis &
Deardorff water tank experiments.
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Fig. 4.29. Mean square error (MSE) of dimensionless mean height
of concentration distribution predicted by the nonlinear-Gaussian
(NG) Langevin equation model using reflection methods I, II, and
III, estimated using observations from the Willis & Deardorff
experiments for dimensionless source height of (a) Zs =0.067 (top
figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom). Error
bars indicate plus and minus standard error.
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Fig. 4.30. Same as Fig. 4.28, except using the linear-skewed
Langevin equation model.
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Fig. 4.31. Mean square error (MSE) of dimensionless mean height
of concentration distribution predicted by the linear-skewed (LS)
Langevin equation model using reflection methods I, II, and III,
estimated using observations from the Willis & Deardorff
experiments for dimensionless source height of (a) Zs =0.067 (top
figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom). Error
bars indicate plus and minus standard error.
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The dimensionless standard deviation (about the source height) of the vertical distribution

of material, σZ ≡ Z − Zs( )2
1

2
, versus downwind distance from simulations using the

nonlinear-Gaussian model and the three reflection methods is compared to observations

from the Willis and Deardorff experiments in Fig. 4.32. The mean square error of the

nonlinear-Gaussian model simulated σZ  is plotted in Fig. 4.33 for each reflection method

and each source height. Fig. 4.34 shows a comparison of the linear-skewed model results

and observations. The MSE of these linear-skewed model results are plotted in Fig. 4.35.

For the Zs = 0.067 case, the nonlinear-Gaussian model results are in better agreement

with observations, with the choice of reflection method causing small differences.

Reflection method II significantly improves the performance of the linear-skewed model

for the Zs = 0.067 case. For Zs = 0.24, the linear-skewed model results are more accurate.

Both the standard deviation and the mean height of the concentration distribution are,

naturally, not affected as strongly by the choice of boundary condition in the two cases

where the sources are farther from the boundaries, Zs = 0.24 and 0.49.

Table 4.4 presents the mean square error and mean fractional error of the predictions of

z h , σ z h, and C(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-

skewed (L-S) Langevin equation model using reflection methods I, II, and III. The mean

square error, MSE, was defined and discussed above. The mean fractional error, MFE, is

defined here as MFE = 1
nobs

(pi − oi )
oii=1

nobs

∑ , and is a measure of the bias of the predictions.

Table 4.4 also presents the standard error (a measure of the uncertainty in the estimated

mean value) of the MSE and MFE for each simulation. Considering all results for all the

experiments, there is no systematic bias in the predictions. The MFE values do indicate

that there is a tendency for observed C(X,0) to be over predicted for Zs = 0.067, and

under predicted for Zs = 0.49. For the nonlinear-Gaussian model using reflection method

II, the observed near-surface concentration is over predicted by an average of 15% (MFE
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= 0.1476) for Zs = 0.067, under predicted by 0.5% (MFE = –0.00508) for Zs = 0.24, and

under predicted by 32% for Zs = 0.49. For the linear-skewed model using reflection

method II, the observed near-surface concentration is over predicted by an average of 5%

for Zs = 0.067, under predicted by 1% for Zs = 0.24, and under predicted by 27% for Zs =

0.49.

In summary, both Langevin equation models can simulate the observed concentration

distributions reasonably well. For both Langevin equation models, simulations with

reflection method II (negatively correlated incident and reflected speeds) result in the best

agreement with the observed concentration distributions. This improved agreement is

most notable for the experiment in which the source is closest to the boundary. When

reflection method II is used, neither Langevin equation model’s results are significantly

better (compared to observations) than the other. The nonlinear-Gaussian model

simulations predict the mean height and standard deviation of the vertical concentration

distribution better than the linear-skewed model simulations for two out of the three

experiments. However, the linear-skewed model simulations predict the near-surface

concentration better than the nonlinear-Gaussian model simulations for most of the

observations. Possible reasons for the differences between the results of simulations using

the two models and the three reflection methods will be discussed in Section 4.3.6.
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Fig. 4.32. Calculations of dimensionless standard deviation of
concentration distribution for dimensionless source height Zs  of (a)
0.067, (b) 0.24, and (c) 0.49 using the nonlinear-Gaussian Langevin
equation model and the three reflection methods: method I (solid line),
method II (dotted line), method III (dashed line). Circles are data from
Willis & Deardorff water tank experiments.
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Fig. 4.33. Mean square error (MSE) of dimensionless standard deviation
of concentration distribution predicted by the nonlinear-Gaussian  (NG)
Langevin equation model using reflection methods I, II, and III, estimated
using observations from the Willis & Deardorff experiments for
dimensionless source height of (a) Zs =0.067 (top figure), (b) Zs =0.24
(middle), and (c) Zs =0.49 (bottom). Error bars indicate plus and minus
standard error.
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Fig. 4.34. Same as Fig. 4.32, except using the linear-skewed
Langevin equation model.
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Fig. 4.35. Mean square error (MSE) of dimensionless standard deviation
of concentration distribution predicted by the linear-skewed (LS) Langevin
equation model using reflection methods I, II, and III, estimated using
observations from the Willis & Deardorff experiments for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c)
Zs =0.49 (bottom). Error bars indicate plus and minus standard error.
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Table 4.4. Error in model predictions estimated using observations from the Willis & Deardorff experiments for dimensionless source
heights of zs/h =0.067, 0.24 and 0.49. Mean square error (MSE), standard error of MSE (SE MSE), mean fractional error (MFE),
standard error of MFE (SE MFE) of predictions of z h , σ z h, and C(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-
skewed (L-S) Langevin equation model using reflection methods I, II, and III.

z h σ z h C(X,0)

Model
 
zs

h S
σw f

2

w*
2

τw*

h Refl.
Meth

.

MSE SE MSE MFE SE MFE MSE SE MSE MFE SE MFE MSE SE MSE MFE SE MFE

N-G 0.067 0.78 0.31 0.8 I 0.00056 0.00016 –0.03709 0.00777 0.00010 0.00003 0.04404 0.02334 0.70675 0.23245 0.44514 0.12330

N-G 0.067 0.78 0.31 0.8 II 0.00013 0.00004 –0.01263 0.00852 0.00030 0.00006 0.05092 0.02387 0.53436 0.37998 0.14760 0.06701

N-G 0.067 0.78 0.31 0.8 III 0.00013 0.00003 –0.01874 0.00623 0.00016 0.00003 0.05439 0.02248 0.57114 0.32196 0.29275 0.08442

N-G 0.240 0.78 0.31 0.8 I 0.00008 0.00002 0.00962 0.00552 0.00089 0.00019 0.07047 0.02140 0.27160 0.05680 0.00098 0.10276

N-G 0.240 0.78 0.31 0.8 II 0.00026  0.00008 –0.00207 0.00934 0.00094 0.00016 0.07514 0.02077 0.19335 0.04337 –0.00508 0.08754

N-G 0.240 0.78 0.31 0.8 III 0.00016 0.00005 0.00278 0.00745 0.00091 0.00016 0.07239 0.02090 0.23290 0.04990 0.00391 0.09623

N-G 0.490 0.78 0.31 0.8 I 0.00063 0.00011 0.00654 0.01048 0.00090 0.00016 –0.06412 0.02912 0.44834 0.09510 –0.39118 0.14740

N-G 0.490 0.78 0.31 0.8 II 0.00071 0.00013 0.00715 0.01121 0.00085 0.00016 –0.05693 0.02930 0.41548 0.07392 –0.32165 0.15860

N-G 0.490 0.78 0.31 0.8 III 0.00067 0.00013 0.00679 0.01090 0.00086 0.00016 –0.05961 0.02917 0.42633 0.08282 –0.35114 0.15423

L-S 0.067 0.78 0.31 0.8 I 0.00706 0.00166 –0.15052 0.01987 0.00356 0.00089 –0.06532 0.03102 0.92419 0.24416 0.67294 0.20864

L-S 0.067 0.78 0.31 0.8 II 0.00140 0.00033 –0.08362 0.00859 0.00078 0.00015 –0.03153 0.02643 0.46914 0.20576 0.05067 0.06425

L-S 0.067 0.78 0.31 0.8 III 0.00302 0.00075 –0.10458 0.01256 0.00136 0.00035 –0.03214 0.02634 0.37587 0.11317 0.34067 0.10907

L-S 0.240 0.78 0.31 0.8 I 0.00025 0.00008 0.01204 0.00925 0.00023 0.00007 0.00673 0.01723 0.20258 0.04539 0.01843 0.08180

L-S 0.240 0.78 0.31 0.8 II 0.00005 0.00002 –0.00852 0.00507 0.00015 0.00003 0.01130 0.01542 0.03051 0.01275 –0.00986 0.02920

L-S 0.240 0.78 0.31 0.8 III 0.00006 0.00002 0.00307 0.00535 0.00022 0.00007 0.01119 0.01672 0.08519 0.01626 0.03093 0.05566

L-S 0.490 0.78 0.31 0.8 I 0.00105 0.00022 0.04424 0.01184 0.00097 0.00019 –0.08405 0.02821 0.24964 0.06297 –0.45376 0.08031

L-S 0.490 0.78 0.31 0.8 II 0.00089 0.00017 0.03416 0.01160 0.00086 0.00019 –0.07107 0.02870 0.07912 0.01411 –0.26640 0.09479

L-S 0.490 0.78 0.31 0.8 III 0.00093 0.00018 0.03613 0.01168 0.00091 0.00019 –0.07760 0.02845 0.16120 0.03747 –0.34961 0.09155
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4.3.5  Sensitivity tests

As mentioned above, there is some variability and uncertainty in the observed values of

the fluid velocity variance, σw f

2 , and, in particular, in the observed values of velocity

skewness, S , and the estimated value of the Lagrangian correlation time, τ , used in the

CBL dispersion simulations just presented. Therefore, the sensitivity of the dispersion

simulation results to the values of τ , σw f

2 , and S  was investigated. Additional

simulations for the three source heights (Zs  = 0.067, 0.24, and 0.49) used in the Willis

and Deardorff experiments were performed with both Langevin equation models using

reflection method II and two alternative values for each of the three parameters,τ , σw f

2 ,

and S , one near the low end and one near the high end of the range of values found in the

CBL. These low-end and high-end values are τw* h  = 0.5 and 1.2, σw f

2 w*
2  = 0.2 and

0.4, and S  = 0.4 and 1.2, respectively. The "best-estimate" values, used in the simulations

shown above, are τw* h  = 0.8, σw f

2 w*
2  = 0.31, and S  = 0.78. Simulations were

completed for each of the three source heights with each model in which only one of

these three parameters was changed (first to the low-end and then to the high-end value)

and the other two parameters were kept at their best-estimate values (this resulted in 18

additional simulations with each model). The results of these sensitivity tests are shown

and discussed in Appendix D. In addition, two simulations were made for each of the

three source heights with each model in which all three parameters were changed together

in the following two combinations: (1) τw* h  = 1.2, σw f

2 w*
2  = 0.4, and S  = 1.2; and (2)

τw* h  = 0.5 , σw f

2 w*
2  = 0.2, and S  = 0.4 (this resulted in 6 additional simulations with

each model). These may be physically realistic combinations because larger values of τ ,

σw f

2 , and S  occur together (e.g., in the middle of the CBL), while lower values occur

together (e.g., toward the bottom of the CBL).
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The simulation results are sensitive to some changes in certain input parameter values.

The results indicate that for the source height near the middle of the boundary layer (Zs =

0.49) higher values of τ  and/or σw f

2  consistently improve results for both models. This is

consistent with the higher measured values for σw f

2  and the higher estimated values for τ

that occur in the middle of the CBL. The sensitivity tests show that the overall agreement

with observations (for all three source heights) is significantly worse for both models

when the lowest σw f

2  value (0.2w*
2) is used, as well as when the lowest τ  value (0.5h/w* )

is used. For the nonlinear-Gaussian model, agreement is significantly worse when the

highest S value (1.2) is used.

Considering all the simulation results for both models (the sensitivity tests shown in

Appendix D, and the original simulations shown above), the original, best-estimate

values for τ =0.8h/w*, σw f

2 = 0.31w*
2 , and S=0.78 result in relatively good agreement with

observations for all three source heights, and appear to be good values for use in a

homogeneous Langevin equation model of the CBL. However, the overall results of the

nonlinear-Gaussian model can be improved by using a smaller value of S (between 0.4

and 0.78), along with a larger value of τ  (between 0.8h/w* and 1.2h/w*  ). The overall

results of the linear-skewed model can be improved by using a larger value of τ  (between

0.8h/w* and 1.2h/w*  ), and were not significantly changed when using a smaller value of S

(except for the C(X,0) results for Zs = 0.49, which improved using a smaller skewness).

Given the uncertainty in these parameter values, modified values within these ranges

could be justified (for example, τ  =1.0h/w* , S  = 0.6), and would improve some of the

predictions of the models.

4.3.6  Discussion

In this section, possible reasons for the differences between the results of the two

Langevin equation models and the three reflection methods used in the CBL simulations
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will be discussed. One notable difference between the results of simulations using

different reflection methods is that method II (negatively correlated incident and reflected

speeds) generally results in the best agreement with the observed dispersion of material

near the surface. As discussed in Chapter 3, the variation of the statistical properties of

the fluid velocity in the surface layer are not resolved in the homogenous model being

used in this work. Correspondingly, the details of possible fluid trajectories near the

surface are not simulated (e.g., the translation of vertical to horizontal motion as air in a

downdraft approaches the surface is not simulated). The CBL simulation results indicate

that reflection method II results in the best approximation (of the three methods tested)

for the trajectories of particles near the surface for a homogeneous model.

Reflection method II seems best able to simulate the time that descending particles, with

different velocity, spend near the surface. Relatively fast descending air in the core of a

strong, organized mixed-layer downdraft penetrates all the way through the surface layer,

as discussed in Chapter 2. Upward motion is suppressed in the downdraft. Air flows

radially outward along the surface, away from the center of the downdraft area.

Therefore, it is very plausible that air approaching the surface from the mixed layer with a

relatively high downward velocity will, on average, remain near the surface longer since

it must move horizontally from the center of the downdraft before reaching the

convergence zones that feed updrafts. Reflection method II has this effect, by assigning a

relatively weak upward velocity when a particle with a strong downward velocity

encounters the surface. Now, air approaching the surface with a relatively low speed (e.g.,

in a relatively weak, narrow downdraft or near the edge of a strong downdraft where

downward speeds are smaller than in the core) will likely approach the surface closer to a

convergence line that feeds an updraft, be more quickly swept into an updraft, and,

therefore, spend relatively little time in the surface layer. Reflection method II has this
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effect, by assigning a relatively strong upward velocity when a particle with a weak

downward velocity encounters the surface.

These arguments for reflection method II are supported by previous numerical

simulations and observational studies. Lamb (1981) noted that Lagrangian simulations,

using 3-D LES velocity fields, of the trajectories of fluid particles released continuously

into downdrafts at approximately 0.5h showed that particles in the core of downdrafts

descend fastest, enter the surface layer, and, on average, tend to remain in the surface

layer initially while slower descending particles enter the surface layer. As a result,

particles tend to accumulate in the surface layer for a time before moving upward, out of

the surface layer. This process is responsible for the secondary concentration maximum at

the surface observed in Lamb’s (1982) LES simulations for a source in the middle of the

CBL, as well as in Willis & Deardorff’s observations show in Fig. 4.17c. The effect of

this process is also seen in the behavior, shown in Fig. 4.17, of the observed maximum

concentration line remaining near the surface for a time after it reaches the surface, and

before it begins to increase in height. This phenomena is best simulated using reflection

method II for both Langevin equation models.

Schmidt and Schumann's (1989) LES simulations showed that, on average, fluid moves

radially outward from the centers of downdrafts along the surface and upward motion is

suppressed in the downdraft area. This fluid moves horizontally near the surface toward

convergence lines (these are “spokes” in a wheel-like pattern ) and then continues to flow

horizontally along these spokes toward "hubs" before beginning to move upward in to the

mixed layer. This indicates that air approaching the surface with a relatively strong

downward velocity (in the core of a downdraft) spends a relatively longer time, on

average, near the surface (as implied by negatively-correlated-speed reflection, method

II), and is not returned relatively quickly to the mixed layer (as implied by positively-
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correlated-speed reflection, method I). Schmidt and Schumann's simulations showed that

this circulation pattern is spatially coherent over large spatial scales (on the order of h).

Vertical motion in the middle of the CBL has a maximum correlation with horizontal

motion very close to the surface, where fluid flows into the bottom of the mixed layer

updrafts and out of the bottom of mixed layer downdrafts. This horizontal surface flow

connects mixed layer downdrafts to updrafts, which are separated, on average, by

horizontal distances of 0.5h to h.

Williams and Hacker (1992, 1993) presented the results of observational studies, and

developed a conceptual model of the interaction of the surface and mixed layers. Their

schematic diagram of this conceptual model includes wide downdraft regions in the

mixed layer penetrating into the surface layer, and, also, narrower, weak downdraft

regions that do not penetrate deep into the surface layer. This diagram indicates that both

the air in weaker downdrafts and the air near the edges of strong downdrafts can be more

quickly re-circulated into updrafts. This is consistent with the effect of reflection method

II.

Based on these previous studies, it is plausible that, for particles released into downdrafts

in the mixed layer, the particles with a strong downward velocity (e.g., in the core of a

downdraft) are swept to the surface faster and then move horizontally along the surface

while slower descending particles (e.g., near the edges of downdraft areas) are still

approaching the surface. The faster-descending and slower-descending particles can then

converge near the edges of downdraft areas near the surface. Reflection method II has

this effect, since it allows the high speed descending particles to remain closer to the

surface after reflection until slower descending particles approach the surface.
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In light of these arguments, positively-correlated-speed reflection (method I) does not

appear to be a good approximation to particle trajectories near the surface. Using

reflection method I, a particle encountering the surface with a relatively strong downward

velocity will be assigned a relatively strong upward velocity and, given the long velocity

correlation time, will unrealistically result in the particle spending relatively little time

near the surface.

Reflection method III results are intermediate between the best results, obtained using

method II, and the worst results, obtained with method I. This indicates that uncorrelated-

speed reflection is a better approximation than positively-correlated-speed reflection.

Reflection method III assigns a randomly selected reflected velocity (from the proper

distribution). Reflection method III might be a reasonable approach if the downdrafts

were not coupled to updrafts in a coherent circulation pattern. However, the observational

and numerical studies discussed above, and the better results obtained with negatively-

correlated-speed reflection (method II), indicate that this is not the case.

The results of the two Langevin equation models using the same reflection method are

significantly different in some cases. This must be due to one or both of the fundamental

differences between the two models: the form of the velocity distribution and the form of

the Langevin equation. The fluid velocity distributions for the two models were shown in

Figs. 4.15 and 4.16. The two forms of the Langevin equation were discussed in Chapter

3, and their deterministic terms compared in Fig. 3.1. The fluid velocity distribution

(which is used to assign initial particle velocities) completely determines the dispersion

for times much less than τ  (in the simulations shown above, the velocity correlation time

is 0.8h / w* , corresponding to a dimensionless travel time and dimensionless downwind

distance, X, of 0.8). However, at later times, it is not possible to isolate the reasons for the

differences between models from these results because the different forms of the
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Langevin equation affect the results, in addition to the different fluid velocity

distributions.

One of the differences between the results of the two Langevin equation models is found

near the top of the boundary layer. The nonlinear-Gaussian model results (Figs. 4.18-20)

show overly high concentrations for all three reflection methods. These overly high

concentrations are not present in the linear-skewed model results (Figs. 4.21-23). A

definitive explanation for this difference cannot be determined from these results.

However, the difference must be due to one or both of the fundamental differences

between the two models: the shape of the velocity distribution (shown in Figs. 4.15 and

4.16) and the form of the Langevin equation. While the overly high concentrations for the

nonlinear-Gaussian model would be decreased if a realistic entrainment layer were

resolved, similar features have been present in results from previous nonlinear-Gaussian

model studies that used more realistic inhomogeneous turbulence parameterizations

(Luhar and Britter, 1989; Weil, 1989; Du et al., 1994). It has been suggested (Weil, 1989;

Du et al., 1994) that these high concentrations may be due to unrealistic aspects of the

inhomogeneous turbulence parameterizations used in these previous studies. However,

the fact that the overly high concentrations at the top of the boundary layer do not appear

in the simulations with the linear-skewed model presented here, nor in Sawford and

Guest's (1987) simulations using an inhomogeneous linear-skewed Langevin model,

suggests that these features may also be the result of an inherent property of at least some

nonlinear-Gaussian Langevin equation models.
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5

Summary and Conclusions

This dissertation presents the development and evaluation of a Langevin equation model

for vertical dispersion of trace material in the convective boundary layer, CBL. This

model simulates the possible trajectories of fluid particles in turbulent flows that have

skewed velocity distributions and large scale turbulent structures, such as in the CBL. A

new model based on a "linear-skewed" form of the Langevin equation, which has a linear

(in velocity) deterministic acceleration and a skewed random acceleration, was

introduced. This model was developed using the simplifying assumption that the vertical

velocity distribution is spatially homogeneous, as well as skewed. Comparisons were

made between this new linear-skewed Langevin equation model and another

homogeneous model, used by previous investigators, that is based on a "nonlinear-

Gaussian" form of the Langevin equation. This nonlinear-Gaussian Langevin equation

has a nonlinear (in velocity) deterministic acceleration and a Gaussian random

acceleration. The well-mixed condition—the constraint that initially well-mixed tracer

spatial and velocity distributions must remain so—was used to develop both models.

In a homogeneous Langevin equation model, the properties of turbulence near boundaries

are not resolved, and interactions with boundaries must be handled with "reflection" of

the velocity. Three reflection boundary conditions that meet the well-mixed condition in

homogeneous, skewed turbulence were presented. These include one using the standard

assumption that the magnitudes of the incident and reflected velocities are positively
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correlated, and two alternatives in which the magnitude of these velocities are either

negatively correlated or uncorrelated.

The linear-skewed and nonlinear-Gaussian Langevin equation models were first tested

using the idealized case of unbounded, stationary, homogeneous turbulence. These

simulations were used to help determine the numerical integration time step size, ∆t ,

required for accurate simulations of particle velocity, w,  and position, z, using each

model. Comparison of the simulated first six velocity moments to the exact moments

(and, for the nonlinear-Gaussian model, the simulated and exact velocity probability

density function) showed that both models can accurately simulate particle velocity for a

sufficiently small time step. Examination of the particle position distributions and

position moments showed that both models can also accurately simulate particle position

for a sufficiently small time step.

While both models can accurately simulate the (w, z) phase space trajectory of a particle,

the linear-skewed model was shown to be more accurate than the nonlinear-Gaussian

model for the same size time step. This is because the linear-skewed form of the

Langevin equation can be integrated explicitly for the case of homogeneous fluid velocity

statistics. The resulting linear-skewed model's velocity update equation is exact through

the first three moments of velocity. In contrast, the corresponding nonlinear-Gaussian

model equation is accurate only through O(∆t) .

A comparison of the first six velocity moments calculated by the linear-skewed model to

the exact fluid velocity moments shows that the method of defining the fourth and higher

fluid velocity moments for this model using the small-time-step limit is practical; that is,

for practical values of the time step size, the calculated fourth and higher moments

approach these exact limiting values. This indicates that this is a successful approach to
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handling the problem of the time step dependence of these higher-order moments, which

arises because the linear-skewed Langevin equation model's random term has non-zero

fourth and higher order cumulants that are not explicitly controlled. In contrast, the

nonlinear-Gaussian model does not have this problem, because it uses a Gaussian random

term, for which the third and higher order cumulants are zero. However, the nonlinear-

Gaussian model does have non-zero third and higher moments of the random term, and

all the moments (first and higher) are approximate, because of the O(∆t)  approximate

velocity update equation used here.

In spite of the approximate higher moments of the linear-skewed model's random term,

the absence of numerical error in the deterministic term and in the first three moments of

the random term for this model, makes the overall error in the velocity and position

distributions much smaller than for the nonlinear-Gaussian model. This is because the

nonlinear-Gaussian model uses an O(∆t)  approximate deterministic term and

O(∆t)approximations for all the moments of the random term.

For the linear-skewed Langevin equation model, exact, analytic expressions for the time-

dependent position moments, zm (t), for the joint velocity-position moments, wn (t)zm (t),

and for the autocorrelation functions w0w
n (t)  can be determined, and were used to show

that for m = 1, 2, 3 and n = 1, 2 and 3 the linear-skewed model calculations for these

quantities are very accurate. These results indicate that the velocity update equation and

the approximate position update equation simulate the joint evolution of particle velocity

and position quite accurately.

Well-mixed spatial and velocity distributions for the idealized case of bounded,

stationary, homogeneous turbulence, were used to evaluate both models. It was shown

that calculations using both models and all three reflection methods approach the correct
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well-mixed distributions as the time step is decreased. These results again showed that

the linear-skewed model can be used with longer time steps than the nonlinear-Gaussian

model and achieve the same accuracy. Acceptably small errors of 3% or less in the spatial

distribution were obtained with the linear-skewed model with ∆t  = 0.2τ , while the

nonlinear-Gaussian model required a smaller time step of ∆t  = 0.05τ  to achieve this

accuracy. Inhomogeneous Langevin models used by previous investigators have used a

time step on the order of ∆t = 0.01τ  for accurate numerical solutions (e.g., less than 3%

error in the concentration from simulations of a well-mixed tracer in a bounded flow).

The homogeneous linear-skewed model, therefore, is more efficient than the

homogeneous nonlinear-Gaussian model, and considerably more efficient than

inhomogeneous models.

Observations from Willis and Deardorff's (1976a, 1976b, 1978 & 1981) laboratory

experiments were used to evaluate the ability of the two homogeneous Langevin equation

models and three reflection methods to simulate velocity distributions and tracer

dispersion in the CBL. The measured velocity distributions published by Deardorff and

Willis (1985) for several heights in the CBL were analyzed to obtain height-averaged

velocity variance and skewness values for use in these simulations. The resulting

simulated velocity distributions were reasonable representations of the observed

distributions.

The simulations of the Willis and Deardorff experiments confirmed that homogeneous

Langevin equation models can capture important aspects of dispersion from sources in

the CBL. Some aspects of the observed tracer dispersion were simulated better by the

linear-skewed model, and some simulated better by the nonlinear-Gaussian model. It was

also found that the choice of reflection boundary condition can significantly affect the

predicted concentration distribution.
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One of the main conclusions of this work is that the application of the negatively

correlated incident and reflected speed boundary condition (reflection method II)

provides a significantly better representation of dispersion within the CBL than the

standard assumption that the speeds are correlated. For both of the homogeneous-

turbulence Langevin equation models, which do not resolve the variation of the statistical

properties of the fluid velocity in the surface layer, this negatively-correlated-speed

reflection method simulates the observed dispersion of material near the surface

significantly better than either of the other two reflection methods. The effect of this

reflection method is consistent with the observed behavior of air in the core of strong

downdrafts, which penetrates deep into the surface layer, spreads out along the surface,

and spends more time near the surface than air in weaker downdrafts, on average. It is

also consistent with air in weaker downdrafts approaching the surface closer to

convergence lines that feed into updrafts, being more quickly swept into updrafts, and

spending less time near the surface. Results using the uncorrelated-speed reflection

(method III) are intermediate between the best results, obtained using reflection method

II, and the poorest results, obtained using positively-correlated-speed reflection method I.

Using reflection method II, both the nonlinear-Gaussian and linear-skewed Langevin

equation models' results are in good agreement with observations from Willis and

Deardorff's experiments. Neither model is clearly superior. Some features of the

concentration field are predicted better by one model and some by the other. The

nonlinear-Gaussian model results agree better with the observed mean height and

standard deviation of the vertical concentration distribution for the sources at zs = 0.067h

and 0.49h. The linear-skewed model results agree better with these observed values for zs

= 0.24h. The linear-skewed model predicts more accurately the near-surface

concentration versus downwind distance, and predicts more accurately a related feature:
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the increasing height of the maximum concentration, with downwind distance, after it

reaches the surface for all three source heights. The nonlinear-Gaussian model predicts

overly high concentrations near the top of the boundary layer. This may be partly due to

unrealistic treatment of the entrainment layer. However, the fact that these features do not

appear in the simulations with a linear-skewed model suggests that these features may

also be the result of an inherent property of the nonlinear-Gaussian Langevin equation

model.

A definitive explanation for the difference in the results of the two Langevin equation

models cannot be determined from this study. However, the difference must be due to

one or both of the related differences between the two models: (1) the different shapes of

the velocity distribution (which, however, were specified to have the same first three

moments), and (2) the different forms of the Langevin equation. For the linear-skewed

model, the velocity distribution, Pf (w), is a result of the assumed form of the Langevin

equation. In contrast, for the nonlinear-Gaussian model, the final form of the Langevin

equation is a result of the assumed analytic form of Pf (w). It is not clear how the two

models could be formulated to use the same fluid velocity distribution (to do a more

direct comparison of the two forms of the Langevin equation), but this is an area of

possible future work.

In the future, other fluid velocity distributions, Pf (w), could also be explored to

determine if they are superior for use in homogeneous-turbulence Langevin equation

models of CBL dispersion. While the velocity distributions used in this work are in

reasonable agreement with the experimental data, they are not unique, and alternatives

could be investigated.
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A possible future extension of this homogeneous-turbulence Langevin equation modeling

approach is to simulate dispersion across the interface between the boundary layer and

the free atmosphere, when these two layers are assumed to have different homogeneous

turbulent properties. Thomson et al. (1997) have proposed an approach to this problem.

This extension might allow better simulation of concentrations in, as well as above, the

interfacial/entrainment layer.

Of the two Langevin equation models and three reflection methods evaluated, the linear-

skewed Langevin equation model with a negatively-correlated-speed reflection boundary

condition (method II) is recommended. The results with the linear-skewed model are

comparable overall to the nonlinear-Gaussian model results, but the linear-skewed model

is significantly more efficient and predicts near-surface concentration, which is of

primary importance for many dispersion-modeling applications, more accurately than the

nonlinear-Gaussian model.
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Appendices

Appendix A: Bi-Gaussian velocity distribution

The bi-Gaussian distribution for Pf (w) used by Baerentsen and Berkowicz (1984) is a

linear combination of two Gaussian distributions, and can be written as follows:

Pf (w) = λ1P1(w) + λ2P2 (w), (3.4.10)

where

P1(w) = 1
2πσ1

exp −
w − w1( )2

2σ1
2













P2 (w) = 1
2πσ2

exp −
w − w2( )2

2σ2
2













(3.4.11, 12)

The six parameters of this distribution, w1 , w2 , σ1, σ2, λ1, and λ2  will be specified

assuming the first three moments of the fluid velocity (wf =0, wf
2 , and wf

3 ) are know.

The six parameters can be determined from the following four equations for moments

zero through three of this distribution,

 λ1 + λ2 = 1, (A.1)
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λ1w1 + λ2w2 = wf = 0, (A.2)

λ1 w1
2 + σ1

2( ) + λ2 w2
2 + σ2

2( ) = wf
2 , (A.3)

λ1 3w1σ1
2 + w1

3( ) + λ2 3w2σ2
2 + w2

3( ) = wf
3 , (A.4)

 along with two closure equations,

w1 = σ1 , (A.5)

w2 = −σ2 . (A.6)

Solving the six equations (A.1-6) for the six parameters yields

w2 = −σ2 =
wf

3 − wf
3 2

+ 8wf
2 3

4wf
2

, (3.4.13)

w1 = σ1 =
−wf

2

2w2

=
wf

3 + wf
3 2

+ 8wf
2 3

4wf
2

, (3.4.14)

λ1 = −w2

w1 − w2

, and (3.4.15)

λ2 = w1

w1 − w2

. (3.4.16)

The higher moments of the bi-Gaussian distribution are not explicitly controlled, but can

be calculated. For example, the fourth through sixth moments are

wf
4 = λ1 3σ1

4 + 6w1
2σ1

2 + w1
4( ) + λ2 3σ2

4 + 6w2
2σ2

2 + w2
4( ), (A.7)
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wf
5 = λ1w1 15σ1

4 + 10w1
2σ1

2 + w1
4( ) + λ2w2 15σ2

4 + 10w2
2σ2

2 + w2
4( ), (A.8)

wf
6 = λ1 15σ1

6 + 45w1
2σ1

4 + 15w1
4σ1

2 + w1
6( ) + λ2 15σ2

6 + 45w2
2σ2

4 + 15w2
4σ2

2 + w2
6( ).

  (A.9)
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Appendix B: Linear-skewed Langevin equation model velocity moments,

autocorrelation functions, position moments and joint velocity-position moments

In Chapter 3 it was shown that for the linear-skewed Langevin equation, the general

equation for the time-dependent velocity cumulants is

wn (t) = w0
n e−nαt + rn (t) , (3.4.20)

where n = 1, 2,. . . , and w0 ≡ w(0). (Note that r is the same as rs in Chapter 3.) The general

expression for the time-dependent cumulants of r  is

rn (t) = Γ n

nα
1 − e−nαt( ). (3.4.21)

Using the definition in Eq. (3.4.27),

α = 1 τ ,

the corresponding first six moment of w(t) are,

w(t) = w0e
− t / τ , 

w2 (t) = w0
2e−2t / τ + r2 (t), 

w3(t) = w0
3e−3t / τ + 3w0e

− t / τ r2 (t) + r3(t), 

w4 (t) = w0
4e−4t / τ + 6w0

2e−2t / τ r2 (t) + 4w0e
− t / τ r3(t) + r4 (t), 

w5(t) = w0
5e−5t / τ + 10w0

3e−3t / τ r2 (t) + 10w0
2e−2t / τ r3(t) + 5w0e

− t / τ r4 (t) + r5(t), and
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w6 (t) = w0
6e−6t / τ + 15w0

4e−4t / τ r2 (t) + 20w0
3e−3t / τ r3(t) +

    15w0
2e−2t / τ r4 (t) + 6w0e

− t / τ r5(t) + r6 (t)
, 

where

r(t) = 0 ,

r2 (t) = wf
2 1 − e−2t / τ( ) ,

r3(t) = wf
3 1 − e−3t / τ( ),

r4 (t) = wf
4 − 3wf

2 2( ) 1 − e−4t / τ( ) + 3wf
2 2

1 − e−2t / τ( )2
,

r5(t) = wf
5 −10wf

2 wf
3( ) 1 − e−5t / τ( ) + 10wf

2 wf
3 1 − e−2t / τ( ) 1 − e−3t / τ( ), and

r6 (t) = wf
6 −15wf

2 wf
4 −10wf

3 2
+ 30wf

2 3[ ] 1 − e−6t / τ( ) + 10wf
3 2

1 − e−3t / τ( )2

+15wf
2 wf

4 − 3wf
2 2( ) 1 − e−2t / τ − e−4t / τ + e−6t / τ( ) + 15wf

2 3
1 − e−2t / τ( )3

The second cumulant of r, for example, is determined as follows:
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r2 (t) = r2 (t) − r(t)
2 = r2 (t)

= e(s− t ) / τ Λ(s)ds
0

t

∫










2

= e(s− t ) / τe(u− t ) / τ Λ(s)Λ(u)duds
0

t

∫
0

t

∫

= e(s− t ) / τe(u− t ) / τ Λ(s)Λ(u)  duds
0

t

∫
0

t

∫

= e(s− t ) / τ e(u− t ) / τΓ2δ (s − u)duds
0

t

∫
0

t

∫

= Γ2 e(s− t ) / τe(s− t ) / τ δ (s − u)du
0

t

∫
= 1

1 24 340

t

∫ ds

= Γ2τ
2

1 − e−2t / τ





Autocorrelation functions can be calculated by taking the nth power of the velocity

equation (3.4.19) multiplying by w0  and taking the ensemble average.  For example, the

first three autocorrelation functions are

w0w(t) = w0
2e− t / τ .

w0w
2 (t) = w0

3e−2t / τ + w0 wf
2 1 − e−2t / τ( ) ,

w0w
3(t) = w0

4e−3t / τ + 3w0
2e− t / τ r2 (t) + w0 r3(t).

For the case of the linear-skewed Langevin equation, integration of the velocity equation

(3.4.19) yields a solution for the time evolution of particle position,
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z(t) = z(0) + w(0)
α

1 − e−αt( ) + 1
α

1 − eα (s− t )[ ]Λ(s)ds
0

t

∫
≡ rz (t)

1 24 4 4 34 4 4

. (B.1)

The moments of z(t) − z0( ) and rz(t) can be determined from Eq. (B.1) and the definitions

of α = 1 τ  in Eq. (3.4.27) and {Γn} in Eq. (3.4.25). The first three moments of z(t) − z0( )
are

z(t) − z0( ) = w0τ 1 − e− t / τ( ) ,

z(t) − z0( )2 = w0
2τ 2 1 − e− t / τ( )2

+ rz
2 (t) , and

z(t) − z0( )3 = w0
3τ 3 1 − e− t / τ( )3

+ 3w0τ 1 − e− t / τ( )rz
2 (t) + rz

3(t)

where z0 ≡ z(0), and

rz (t) = 0 ,

rz
2 (t) = wf

2τ 2 2
t

τ
+ 4e− t / τ − e−2t / τ − 3




, and

rz
3(t) =

wf
3τ 3

2
6

t

τ
+ 18e− t / τ − 9e−2t / τ + 2e−3t / τ −11




.

The expression for z(t) − z0( )2
 is the same as that obtained by Taylor (1921) using an

exponential velocity autocorrelation function (which, as discussed in Chapter 3, is a

property of a Langevin equation with a linear deterministic acceleration).
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Similarly, joint moments of w(t) and z(t) − z0( ) can be determined from Eqs. (3.4.19) and

(B.1). For example,

w(t) z(t) − z0( ) = w0
2τe− t / τ 1 − e− t / τ( ) + r(t)rz (t),

w2 (t) z(t) − z0( ) = 2w0 r(t)rz (t)e
− t / τ + w0τr2 (t) 1 − e− t / τ( ) +

       w0
3τ e−2t / τ − e−3t / τ( ) + r2 (t)rz (t)

, and

w(t) z(t) − z0( )2 = w0 rz
2 (t)e− t / τ + 2w0τr(t)rz (t) 1 − e− t / τ( ) +

       w0
3τ 2 e−3t / τ − 2e−2t / τ + e− t / τ( ) + r(t)rz

2 (t)
,

where

r(t)rz (t) = wf
2τ 1 − e− t / τ( )2

, 

r2 (t)rz (t) =
wf

3τ
2

1 − e− t / τ( )2
1 + 2e− t / τ( ), 

r(t)rz
2 (t) = wf

3τ 2 1 − e− t / τ( )3
, and

r2 (t) and rz
2 (t) were given above.

These exact expressions for the position moments and joint velocity-position moments,

can be used to examine the accuracy of the approximate position equation, z(t + ∆t) =

z(t) + 1
2 w(t + ∆t) + w(t)[ ]∆t , (described in Chapter 3) by comparing series expansions of

the exact and approximate expressions. The result is that for the first two position

moments the exact and approximate expressions are the same through O(∆t2 ) :

z(t + ∆t) − z(t)[ ] = w(t)∆t − w(t)∆t2

2τ
+ O ∆t3( ),
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z(t + ∆t) − z(t)[ ]2 = w2 (t)∆t2 + O ∆t3( ) .

The exact and approximate expressions for the following joint moments are also the same

through O(∆t2 ) :

w(t) z(t + ∆t) − z(t)[ ] = w2 (t)∆t +
wf

2

τ
− 3w2 (t)

2τ








 ∆t2 + O ∆t3( ),

w2 (t) z(t + ∆t) − z(t)[ ] = w3(t)∆t +
4wf

2 w(t)

τ
− 5w3(t)

2τ
+

3wf
3

2τ








 ∆t2 + O ∆t3( ),

w(t) z(t + ∆t) − z(t)[ ]2 = w3(t)∆t2 + O ∆t3( ).
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Appendix C: Linear-skewed model random velocity increment distribution

Double-block distribution

An example of the skewed "double-block" distribution used for the random velocity

increment, r(∆t), in the linear-skewed Langevin equation model is shown in Fig. C.1-2.

(Note that r is the same as rs  used in Chapter 3.) Fig. C1 shows the two separate scaled

uniform distributions, f1(r) and f2(r), defined by six parameters: the means m1 and m2;

half-widths, ∆1 and ∆2; and probability densities, p1 and p2, respectively. Fig. C2 shows

the double-block probability density function, Pa (r), which is a linear combination of the

two distributions:

Pa (r) = f1(r)  + f2(r) , (C.1)

where

f1(r) =
p1,  if (m1 − ∆1) ≤ r ≤ (m1 + ∆1)

0 ,  elsewhere




(C.2)

and

f 2 (r) =
p2 ,  if (m2 − ∆2 ) ≤ r ≤ (m2 + ∆2 )

0 ,  elsewhere




(C.3)

Using (C.1-3), the general equation for the moments is

ra
n ≡ rnPa (r)dr

−∞

∞

∫

= p1

n + 1
m1 + ∆1( )n+1 − m1 − ∆1( )n+1[ ] + p2

n + 1
m2 + ∆2( )n+1 − m2 − ∆2( )n+1[ ]

(C.4)
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m2m1

p1

∆2∆1

p2

Pa(r)

r

Fig. C.1. Example of two overlapping uniform probability
density functions: f1(ra) (solid line) and f2(ra) (dashed line)
with means m1 and m2 ; half-widths ∆1 and ∆2; and
probability densities p1 and p2, respectively.

(p1+p2)

Pa(r)

r

Fig. C.2. Example of double-block probability density
function which is the sum of the two overlapping uniform
distributions in Fig. 1a. This distribution has a mean of
zero, a variance of 1 and a skewness of 0.5.
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Since we know that skewness is of fundamental importance to CBL dispersion, we will

derive the six parameters of this distribution so that the desired first moment (the mean,

assumed to be zero), second moment (σr
2), and third moment (ζr

3) are obtained.

Moments zero through three then provide us with four equations:

ra
0 = 2 p1∆1 + 2 p2∆2 = 1, (C.5)

ra = m1p1∆1 + m2 p2∆2 = 0 , (C.6)

ra
2 = 2

3 p1∆1
3 + 2∆1m1

2 p1 + 2
3 p2∆2

3 + 2∆2m2
2 p2 = σr

2 , and (C.7)

ra
3 = 2 ∆1

3m1p1 + ∆1m1
3 p1 + ∆2

3m2 p2 + ∆2m2
3 p2[ ] = ζr

3. (C.8)

Since there are four equations and six unknowns, two more equations are required for

closure. We use the following two equations:

∆1
2 = A2m1

2 + B2σr
2   and (C.9)

∆2
2 = A2m2

2 + B2σr
2 . (C.10)

A and B are positive constants which must be specified.

Solving (C.5-10) for m1, m2, p1 and p2 results in

  

m1,2 = C

2Dσr
2

ζr
3

E
m

ζr
6

E2 + 4D3σr
6

C3







1
2











(C.11)
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p1 = m2

2∆1 m2 − m1( ) , and (C.12)

p2 = −m1

2∆2 m2 − m1( ) , (C.13)

where

C = 1 + A2

3
,

D = 1 − B2

3
, and

E = 1 + A2.

From these expressions it can be seen that the coefficient B must be less than 3 .

Four parameters then define the double-block distribution: the constants A  and B, and the

desired second and third moments, σr
2 and ζ r

3. Through Eqs. (C.9-13) these four

parameters completely define m1, m2, p1, p2, ∆1,  and ∆ 2  and, correspondingly, the

double-block distribution, Pa (r).

As a result of this procedure to define Pa (r), the first, second, and third moments of the

distribution are explicitly specified, while the higher moments are implicitly defined

through m1, m2, p1, p2, ∆1,  and ∆2, and can be calculated using the general moment

equation (C.4). The higher (n = 4, 5, . . .) moments of Pa (r) for ∆t/τ << 1 are

ra
n (∆t)∆t / τ <<1 = ∆t

τ






wf
3( )n−2

wf
2( )n−3

3n−2 (1 + A)n+1 − (1 − A)n+1[ ]Cn−3

2n−2 n + 1( )ADn−3En−2












,  n = 4, 5, . . . .
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Fluid velocity moments

The moments of r(∆t ) in the linear-skewed Langevin equation model’s velocity equation

are related to the fluid velocity moments, for ∆t/τ << 1, through Eq. (3.6.7):

rn (∆t)∆t / τ <<1 = rn (∆t)
∆t / τ <<1

= Γn∆t = n wf
n ∆t

τ
, 

where n=1, 2, . . . (note that we have used the property that the moments of r  approach

the cumulants of r  in the small time limit).

Equating rn (∆t)∆t / τ <<1 = ra
n (∆t)∆t / τ <<1, the higher fluid velocity cumulants corresponding

to the double-block distribution are

wf
n =

wf
3( )n−2

wf
2( )n−3

3n−2 (1 + A)n+1 − (1 − A)n+1[ ]Cn−3

2n−2 n n + 1( )ADn−3En−2












,  n = 4, 5, . . . .

The constants A and B  were assigned values of A = B = 1. These values resulted in

reasonable agreement between the linear-skewed Langevin equation model predicted

velocity distributions and experimentally determined velocity distributions published by

Deardorff and Willis (1985) and shown in Chapter 4. With A = B = 1, the fourth, fifth,

and sixth fluid velocity moments are

wf
4 =

9wf
3 2

5wf
2

+ 3wf
2 2

,

wf
5 =

18wf
3 3

5wf
2 2 + 10wf

2 wf
3 ,

wf
6 =

54wf
3 4

7wf
2 3 + 10wf

3 2
+ 15wf

2 wf
4 − 30wf

2 3
.
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Continuity of w(t)

As discussed in Chapter 3, the velocity described by the linear-skewed Langevin equation

model is well behaved in the sense that it is mean-square continuous, that is

lim∆t→0 ∆w2 (∆t) = 0 . In fact, all the moments of the velocity change for the linear-

skewed Langevin equat ion vanish for  vanishing t ime step,

lim∆t→0 ∆wn (∆t) = lim∆t→0 rn (∆t) = 0 , as shown by Eq. (3.6.7). However, the linear-

skewed Langevin equation describes a process in which the possible realizations of w(t),

or "sample paths", are not continuous functions of time.

The possible realizations of w(t) are continuous functions of time if, for any ε > 0,

lim∆t→0

P(w∆t ;  w0 )dw∆t

w∆t −w0 >ε
∫

∆t
= 0 (C.14)

where P(w∆t ;  w0 ) is the probability of velocity w∆t  at t = ∆t , given velocity w0  at t = 0

(Gardiner, 1990). For convenience, define

Fε ≡ P(w∆t ;  w0 )dw∆t

w∆t −w0 >ε
∫ .

Fε  is the probability that the absolute value of the difference between w∆t  and w0  is

greater than ε. Therefore, Eq. (C.14) can be re-written as follows:

lim∆t→0

Fε

∆t
= 0.

Eq. (C.14) states that probability that the velocity at t = ∆t  is finitely different than the

velocity at t = 0 goes to zero faster than ∆t , as ∆t  goes to zero.
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We will now examine the continuity condition given by Eq. (C.14) for the linear-skewed

Langevin equation model using the double-block distribution. Consider the case where

w0 = 0, so that

P(w∆t ;  w0 ) = Pa (r)

(see Eq. (3.6.4)). For the continuity condition, we are interested in the small time limiting

behavior of Pa (r). For ∆t τ << 1 , the parameters of double-block distribution, Pa (r),

(with A = B = 1) become (retaining only lowest order ∆t/τ terms)

m1 = −
2wf

2 2

3wf
3

∆t

τ
,

∆1 = 2 wf
2

1
2 ∆t

τ






1
2

,

m2 =
3wf

3

2wf
2

+
2wf

2 2

3wf
3

∆t

τ




 ,

∆2 =
3wf

3

2wf
2











2

+ 4wf
2 ∆t

τ


















1/ 2

.

Therefore, for ∆t τ << 1

m1 = O(∆t),

∆1 = O ∆t
1

2( ) ,

m2 =
3wf

3

2wf
2

= constant,
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∆2 =
3wf

3

2wf
2

= constant ,

and

p1 = O ∆t
− 1

2( ) ,

p2 = O(∆t).

So the continuity condition (C.14) becomes

  

lim∆t→0

Fε

∆t
= lim∆t→0

Pa (r)dr
r >ε
∫

∆t

= lim∆t→0

f1(r) + f 2 (r)[ ]dr
r >ε
∫

∆t

= lim∆t→0

1
∆t





 f1(r)dr

r<−ε
∫

≡ F−ε1

1 24 34

+ f 2 (r)dr
r<−ε
∫

≡ F−ε2

1 24 34

+ f1(r)dr
r>ε
∫

≡ F+ε1

1 24 34

+ f 2 (r)dr
r>ε
∫

≡ F+ε2

1 24 34



















where

F−ε1 =
 

 




−ε − (m1 − ∆1)( )p1, if (m1 − ∆1) < −ε
0, if (m1 − ∆1) > −ε

F−ε 2 =
 

 




−ε − (m2 − ∆2 )( )p2 , if (m2 − ∆2 ) < −ε
0, if (m2 − ∆2 ) > −ε

F+ε1 =
 

 




m1 + ∆1 − ε( )p1, if (m1 + ∆1) > ε
0, if (m1 + ∆1) < ε

F+ε 2 =
 

 




m2 + ∆2 − ε( )p2 , if (m2 + ∆2 ) > ε
0, if (m2 + ∆2 ) < ε
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Note that lim∆t→0 m2 = lim∆t→0 ∆2 = constant, so that lim∆t→0 (m2 − ∆2 ) = 0 and

lim∆t→0 F−ε 2 = 0. For positive values of F+ε1 and F−ε1, both 
F+ε1

∆t
 and 

F−ε1

∆t
 depend on

∆t  as follows:

O ∆t−1( ) – O ∆t
−3

2( ) ,

where small time behavior of the double-block parameters, m1, m2 , ∆1 , ∆2 , p1, and p2,

given above, has been used (recall that these parameters are all positive except m1 < 0).

So, for small ε < lim∆t→0 m2 + ∆2( ) ,

lim∆t→0

F−ε1

∆t
= 0

lim∆t→0

F−ε 2

∆t
= 0

lim∆t→0

F+ε1

∆t
= 0

lim∆t→0

F+ε 2

∆t
= constant

Therefore,

lim∆t→0

Fε

∆t
= constant

and not zero for all ε  > 0 as required for continuity. Therefore, the process described by

the skewed double-block distribution is not continuous in this sense. This discontinuous

property is due to the probability of a value of r  > ε from block 2, F+ε 2 , decreasing

linearly in ∆t , and not faster than ∆t , as required to meet the continuity condition (C.14).

Note, however, that the probability of selecting a value of r   from block 2 does decrease

to zero as ∆t  goes to zero,
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lim∆t→0 2∆2 p2( ) = 0,

while the probability of selecting a value from block 1 goes to one,

lim∆t→0 2∆1p1( ) = 1.

In this sense, the change in velocity is well behaved.

In contrast, for the special case in which Pa (r) is not skewed (i.e., wf
3 = 0  so that

r3 = 0), the small-∆t  behavior of the double-block parameters is

m2 = −m1 = O ∆t
1

2( ),

∆2 = ∆1 = O ∆t
1

2( ),

p2 = p1 = O ∆t
− 1

2( ),

and

lim∆t→0

F−ε1

∆t
= lim∆t→0

F−ε 2

∆t
= lim∆t→0

F+ε1

∆t
= lim∆t→0

F+ε 2

∆t
= 0.

Therefore, if the random term is not skewed, the process is continuous.
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Appendix D: CBL simulation sensitivity tests

As discussed in Section 4.3.5,  additional CBL dispersion simulations were performed to

test the sensitivity of results to values of the input parameters τ , σw f

2 , and S . Additional

simulations for the three source heights (Zs  = 0.067, 0.24, and 0.49) used in the Willis &

Deardorff experiments were performed with both Langevin equation models using

reflection method II and two alternative values of τ , σw f

2 , and S , one near the low end

and one near the high end of the range of values found in the CBL. These low-end and

high-end values are τw* h  = 0.5 and 1.2, σw f

2 w*
2  = 0.2 and 0.4, and S  = 0.4 and 1.2,

respectively. The "best-estimate" values, used in the simulations shown in Chapter 4, are

τw* h  = 0.8, σw f

2 w*
2  = 0.31, and S  = 0.78. Results from simulations for each of the

three source heights with each of the two Langevin equation models are shown below.

The mean height and standard deviation of the vertical concentration distribution, Z  and

σZ , and the near-surface concentration, C(X,0), calculated from the simulations using

the three different values (low, best-estimate, and high) for each parameter (τ , σw f

2 , or S)

are plotted along with observations from Willis & Deardorff’s experiments in Figs. D.1

through D.18.

The mean square error (MSE) and mean fractional error (MFE) of the simulated values of

z h , σ z h, and C(X,0) were estimated using observations from the Willis & Deardorff

experiments. The mean square error (MSE) is defined here as MSE = 1
nobs

(pi − oi )
2

i=1

nobs

∑ ,

where oi is a observed value, pi is the model predicted value interpolated to the point of

the observation, and nobs is the number of observations. MSE is a measure of the absolute

error in the predictions. The mean fractional error (M F E) is defined here as

MFE = 1
nobs

(pi − oi )
oii=1

nobs

∑ , and is a measure of the bias of the predictions. Table D.1

presents the MSE and MFE, and the standard error (a measure of uncertainty in the

estimated mean value) of the MSE and MFE for each simulation. Considering all the
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results, the MFE values indicate that there is no systematic bias in predictions. The MFE

values do indicate that there is a tendency for observed C(X,0) to be over predicted for

Zs = 0.067, and under predicted for Zs = 0.49. Table D.2 presents the model-predicted

maximum near-surface concentration, C(X,0), from each simulation, and the observed

maximum C(X,0) from the Willis & Deardorff experiments.

The simulation results indicate that Z , σZ  and C(X,0), varied with different values of τ ,

σw f

2 , and S  in a similar manner for both Langevin equation models. As the value of τ  is

increased, the rate at which Z  and σZ  increases with downwind distance (travel time) is

significantly greater for Zs = 0.067 and 0 < X < 1.5. For Zs = 0.24, this effect was also

present, but less pronounced. For Zs = 0.49, larger values of τ  result in a slightly faster

initial ( 0 < X < 1) rate of decrease of Z  and slightly faster initial rate of increase of σZ

with downwind distance. For Zs = 0.49, larger values of τ  also result in higher maximum

C(X,0), as well as smaller X at which the maximum C(X,0) occurs. This effect was also

present for Zs = 0.24, but was less pronounced. For Zs = 0.49, higher values of τ

consistently improve results for both models.

Larger values of σw f

2  result in a more rapid initial (0 < X < 1) rate of increase of Z  with

downwind distance for Zs = 0.067 and 0.24. For Zs = 0.49, larger values of σw f

2  result in

a more rapid initial rate of decrease of Z  with downwind distance. Larger values of σw f

2

also result in a more rapid increase in σZ  with downwind distance, as expected, for all

three source heights, Zs . Larger values of σw f

2  also result in smaller X at which the peak

C(X,0) occurs for all Zs (and also some tendency for higher peak C(X,0) values). This

effect might be explained by the increase in the magnitude of the mean negative fluid

velocity, for the modeled fluid velocity distributions, with increasing σw f

2 . The only

consistent improvement in the overall results of both models (compared to the original
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simulations using the best-estimate values) was found for Zs = 0.49 when using the

largest value of σw f

2 .

Larger values of S  result in a more rapid initial (0 < X < 1) rate of decrease in Z  with

downwind distance for Zs = 0.49. For Zs = 0.24, larger values of S  result in a smaller

initial rate of increase in Z  with downwind distance. For Zs = 0.067, larger values of S

result in a faster initial rate of increase in Z  and σZ  with downwind distance. Larger

values of S  tended to result in higher peak C(X,0). For Zs = 0.49 and 0.24, larger S

results in larger X at which the peak C(X,0) occurs . These effects might be explained by

the decrease in the magnitude of the mean negative fluid velocity, the decrease in the

variance of the negative velocity, and the increase in the total probability of a negative

velocity with increasing S for the modeled fluid velocity distributions. Changes in S have

a larger effect on the results of the nonlinear-Gaussian model than the linear-skewed

model (for the range of S tested). The only overall improvement on the results of

simulations using the original best-estimate parameter values was found for the

nonlinear-Gaussian model when using the lowest value of S = 0.4 (in particular, results

for Zs = 0.24 and 0.49 significantly improved) .

For a particular source height and a particular model, some combinations of input

parameter values significantly improve some of the results. For Zs = 0.067, the linear-

skewed model results for Z  and σZ  improve when using the largest values of τ , σw f

2  or

S . For Zs = 0.24 and 0.49, the nonlinear-Gaussian model results for C(X,0) improve

significantly, and the Z  and σZ results also tend to improve, using the smallest value of

S . For Zs = 0.49, nonlinear-Gaussian model results for Z , σZ , and C(X,0) improve

using the largest values of τ  or σw f

2 ; results for the location of the maximum C(X,0)

improve using the smallest value of S ; and results for the maximum C(X,0) improve

using the largest value of S . For Zs = 0.49, linear-skewed model results for Z  and
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C(X,0) improve significantly when the largest values of τ , σw f

2 , and S  were used

together.
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Lagrangian time scale sensitivity tests

Fig. D.1. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the nonlinear-
Gaussian Langevin equation model and three values for the Lagrangian velocity correlation time: τw* h
= 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff
experiments.



154

Fig. D.2. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the
nonlinear-Gaussian Langevin equation model and three values for the Lagrangian velocity correlation
time: τw* h  = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis &
Deardorff water tank experiments.
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Fig. D.3. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using the nonlinear-Gaussian Langevin equation model and three values for the Lagrangian velocity
correlation time: τw* h  = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from
Willis & Deardorff water tank experiments.
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Fig. D.4. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the linear-skewed
Langevin equation model and three values for the Lagrangian velocity correlation time: τw* h  = 0.5
(solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.5. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the
linear-skewed Langevin equation model and three values for the Lagrangian velocity correlation time:
τw* h  = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff
water tank experiments.
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Fig. D.6. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using the linear-skewed Langevin equation model and three values for the Lagrangian velocity
correlation time: τw* h  = 0.5 (solid line), 0.8 (dotted line), 1.2 (dashed line). Circles are data from
Willis & Deardorff water tank experiments.
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Velocity skewness sensitivity tests

Fig. D.7. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the nonlinear-
Gaussian Langevin equation model and three values for fluid velocity skewness : S = 0.4 (solid line),
0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.8. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the
nonlinear-Gaussian Langevin equation model and three values for fluid velocity skewness : S = 0.4
(solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Fig. D.9. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using the nonlinear-Gaussian Langevin equation model and three values for fluid velocity skewness : S
= 0.4 (solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.
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Fig. D.10. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the linear-skewed
Langevin equation model and three values for fluid velocity skewness : S = 0.4 (solid line), 0.78 (dotted
line), 1.2 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.11. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the
linear-skewed Langevin equation model and three values for fluid velocity skewness : S = 0.4 (solid
line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Fig. D.12. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using the linear-skewed Langevin equation model and three values for fluid velocity skewness : S = 0.4
(solid line), 0.78 (dotted line), 1.2 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Velocity variance sensitivity tests

Fig. D.13. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the nonlinear-

Gaussian Langevin equation model and three values for fluid velocity variance : σw f

2 w*
2  = 0.2 (solid

line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.14. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the

nonlinear-Gaussian Langevin equation model and three values for fluid velocity variance : σw f

2 w*
2  =

0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.
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Fig. D.15. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)
using the nonlinear-Gaussian Langevin equation model and three values for fluid velocity variance :
σw f

2 w*
2  = 0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis &

Deardorff water tank experiments.
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Fig. D.16. Calculations of dimensionless near-ground concentration for dimensionless source height of
(a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the linear-skewed

Langevin equation model and three values for fluid velocity variance : σw f

2 w*
2  = 0.2 (solid line), 0.31

(dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff experiments.
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Fig. D.17. Calculations of dimensionless mean height of concentration distribution for dimensionless
source height of (a) Zs =0.067 (top figure), (b) Zs =0.24 (middle), and (c) Zs =0.49 (bottom) using the

linear-skewed Langevin equation model and three values for fluid velocity variance : σw f

2 w*
2  = 0.2

(solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water tank
experiments.
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Fig. D.18. Calculations of dimensionless standard deviation of concentration distribution for
dimensionless source height Zs  of (a) 0.067 (top figure), (b) 0.24 (middle), and (c) 0.49 (bottom)

using the linear-skewed Langevin equation model and three values for fluid velocity variance : σw f

2 w*
2

= 0.2 (solid line), 0.31 (dotted line), 0.4 (dashed line). Circles are data from Willis & Deardorff water
tank experiments.
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Table D.1. Error in model predictions estimated using observations from the Willis & Deardorff experiments for dimensionless source
heights of zs/h =0.067, 0.24 and 0.49. Mean square error (MSE), standard error of MSE (SE MSE), mean fractional error (MFE), standard
error of MFE (SE MFE) of predictions of z h , σ z h, and C(X,0) from simulations with nonlinear-Gaussian (N-G) and linear-skewed (L-
S) Langevin equation model using reflection method II and a range of input values for the fluid velocity skewness, S, the dimensionless
fluid velocity variance, σw f

2 w*
2 , and the dimensionless Lagrangian correlation time, τw* h .

z h σ z h C(X,0)

Model
 
zs

h S
σw f

2

w*
2

τw*

h Refl.
Meth.

MSE SE MSE MFE SE MFE MSE SE MSE MFE SE MFE MSE SE MSE MFE SE MFE

N-G 0.067 0.40 0.20 0.5 II 0.01223 0.00246 –0.25432 0.02261 0.01120 0.00211 –0.23210 0.03356 1.17170 0.26440 0.61216 0.14355

N-G 0.067 0.40 0.31 0.8 II 0.00069 0.00017 –0.05523 0.00814 0.00049 0.00008 –0.02140 0.02537 0.52778 0.23753 0.05405 0.07073

N-G 0.067 0.78 0.20 0.8 II 0.00470 0.00081 –0.16347 0.02471 0.00365 0.00059 –0.11775 0.03122 1.61104 0.56178 0.50906 0.10503

N-G 0.067 0.78 0.31 0.5 II 0.00083 0.00018 –0.06442 0.00862 0.00019 0.00003 0.00888 0.02576 0.69548 0.38372 0.32951 0.10120

N-G 0.067 0.78 0.31 0.8 II 0.00013 0.00004 –0.01263 0.00852 0.00030 0.00006 0.05092 0.02387 0.53436 0.37998 0.14760 0.06701

N-G 0.067 0.78 0.31 1.2 II 0.00062 0.00018 0.02192 0.01121 0.00101 0.00025 0.07706 0.02360 0.55335 0.37201 0.03602 0.05078

N-G 0.067 0.78 0.40 0.8 II 0.00144 0.00028 0.08334 0.01418 0.00251 0.00050 0.15570  0.02915 0.91359 0.49614 –0.00690 0.06140

N-G 0.067 1.20 0.31 0.8 II 0.00105 0.00021 0.03009 0.01579 0.00200 0.00037 0.12234 0.02328 1.02037 0.56249 0.27480 0.07695

N-G 0.067 1.20 0.40 1.2 II 0.00645 0.00130 0.16012 0.02580 0.00840 0.00168 0.25167 0.03438 0.86436 0.67226 0.00381 0.05013

N-G 0.240 0.40  0.20 0.5 II 0.00184 0.00043 –0.08946 0.01488 0.00068 0.00009 –0.12609 0.02123 0.72655 0.15443 0.01134 0.16603

N-G 0.240 0.40 0.31 0.8 II 0.00014 0.00004 0.01703 0.00587 0.00063 0.00014 0.05038 0.01954 0.01890 0.00434 0.04957 0.02586

N-G 0.240 0.78 0.20 0.8 II 0.00154 0.00034 –0.07724 0.01733 0.00039 0.00010 –0.05870 0.02698 1.10645 0.22402 0.00825 0.19037

N-G 0.240 0.78 0.31 0.5 II 0.00026 0.00005 –0.02979 0.00899 0.00043 0.00006 0.04111 0.01877 0.39351 0.07641 0.01549 0.12392

N-G 0.240 0.78 0.31 0.8 II 0.00026 0.00008 –0.00207 0.00934 0.00094 0.00016 0.07514 0.02077 0.19335 0.04337 –0.00508 0.08754

N-G 0.240 0.78 0.31 1.2 II 0.00049 0.00019 0.01435 0.01067 0.00125 0.00024 0.08958 0.02157 0.08230 0.02578 –0.01935 0.05202

N-G 0.240 0.78 0.40 0.8 II 0.00075 0.00025 0.04801 0.01026 0.00208 0.00036 0.15035 0.01936 0.02630 0.00708 0.06842 0.02281

N-G 0.240 1.20 0.31 0.8 II 0.00094 0.00023 –0.02855 0.01723 0.00120 0.00024 0.08621 0.02136 0.78266 0.15711 –0.00960 0.15871
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N-G 0.240 1.20 0.40 1.2 II 0.00112 0.00045 0.03408 0.01467 0.00268 0.00049  0.17145 0.01980 0.10643 0.02678 0.00767 0.05746

N-G 0.490 0.40 0.20 0.5 II 0.00139 0.00025 0.02977 0.01534 0.00266 0.00052 –0.13959 0.04237 0.75209 0.17856 –0.44991 0.15828

N-G 0.490 0.40 0.31 0.8 II 0.00079 0.00015 0.03125 0.01097 0.00072 0.00016 –0.04888 0.02865 0.12320 0.02068 –0.27350 0.11002

N-G 0.490 0.78 0.20 0.8 II 0.00186 0.00038 0.00310 0.01803 0.00240 0.00044 –0.12665 0.04164 0.83612 0.19389 –0.48684 0.17093

N-G 0.490 0.78 0.31 0.5 II 0.00087 0.00016 0.00834 0.01244 0.00111 0.00019 –0.07194 0.03103 0.57256 0.12599 –0.42790 0.16002

N-G 0.490 0.78 0.31 0.8 II 0.00071 0.00013 0.00715 0.01121 0.00085 0.00016 –0.05693 0.02930 0.41548 0.07392 –0.32165 0.15860

N-G 0.490 0.78 0.31 1.2 II 0.00062 0.00012 0.00791 0.01049 0.00072 0.00015 –0.05103 0.02814 0.26746 0.04472 –0.30872 0.14086

N-G 0.490 0.78 0.40  0.8 II 0.00026 0.00005 0.00958 0.00667 0.00038 0.00006 –0.01868 0.02141 0.17627 0.02373 –0.21061 0.12179

N-G 0.490 1.20 0.31 0.8 II 0.00164 0.00048 –0.02102 0.01612 0.00126 0.00015 –0.07024 0.03172 0.68193 0.15278 –0.46803 0.17159

N-G 0.490 1.20 0.40 1.2 II 0.00059 0.00017 –0.01506 0.00978 0.00052 0.00006 –0.02670 0.02249 0.33356 0.05644 –0.29660 0.15267

L-S 0.067 0.40 0.20 0.5 II 0.01761 0.00344 –0.29996 0.02370 0.01593 0.00291 –0.27970 0.03312 0.94383 0.20340 0.61231 0.15330

L-S 0.067 0.40 0.31 0.8 II 0.00245 0.00057 –0.10497 0.01164 0.00179 0.00034 –0.07001 0.02679 0.47595 0.19313 0.03079 0.06835

L-S 0.067 0.78 0.20 0.8 II 0.00919 0.00183 –0.22684 0.02257 0.00790 0.00146 –0.19307 0.03167 0.75719 0.40307 0.36150 0.08951

L-S 0.067 0.78 0.31 0.5 II 0.00558 0.00126 –0.15656 0.01460 0.00372 0.00078 –0.09934 0.03050 0.38061 0.14003 0.25250 0.10888

L-S 0.067 0.78 0.31 0.8 II 0.00140 0.00033 –0.08362 0.00859 0.00078 0.00015 –0.03153 0.02643 0.46914 0.20576 0.05067 0.06425

L-S 0.067 0.78 0.31 1.2 II 0.00033 0.00006 –0.03832 0.00829 0.00020 0.00003 0.00974  0.02464 0.53312 0.22055 –0.00670 0.05490

L-S 0.067 0.78 0.40 0.8 II 0.00015 0.00003 0.00752 0.00847 0.00022 0.00004 0.07104 0.02889 1.03843 0.38838 –0.07628 0.06296

L-S 0.067 1.20 0.31 0.8 II 0.00090 0.00021 –0.07288 0.00850 0.00031 0.00006 0.00094 0.02651 0.38959 0.21588 0.13512 0.06261

L-S 0.067 1.20 0.40 1.2 II 0.00121 0.00021 0.06830 0.01402 0.00220 0.00041 0.15077 0.03030 0.87121 0.35487 –0.04591 0.05919

L-S 0.240 0.40 0.20 0.5 II 0.00236 0.00063 –0.09465 0.01594 0.00136 0.00011 –0.16855 0.01725 0.40000 0.08493 0.02327 0.13097

L-S 0.240 0.40 0.31 0.8 II 0.00003 0.00001 0.00438 0.00477 0.00015 0.00004 0.00245 0.01557 0.05768 0.02096 0.08349 0.05106

L-S 0.240 0.78 0.20 0.8 II 0.00149 0.00036 –0.07966 0.01414 0.00059 0.00008 –0.11773 0.02077 0.47713 0.13340 –0.07474 0.12811

L-S 0.240 0.78 0.31 0.5 II 0.00042 0.00013 –0.03711 0.00792 0.00007 0.00002 –0.03036 0.01319 0.06986 0.01702 0.06396 0.06039

L-S 0.240 0.78 0.31 0.8 II 0.00005 0.00002 –0.00852 0.00507 0.00015 0.00003 0.01130 0.01542 0.03051 0.01275 –0.00986 0.02920

L-S 0.240 0.78 0.31 1.2 II 0.00012 0.00004 0.01097 0.00599 0.00036 0.00007 0.03523 0.01669 0.04716 0.02225 –0.03465 0.03161

L-S 0.240 0.78 0.40 0.8 II 0.00032 0.00008 0.03945 0.00740 0.00073 0.00015 0.08598 0.01404 0.17359 0.04762 0.11803 0.08470

L-S 0.240 1.20 0.31 0.8 II 0.00018 0.00004 –0.02660 0.00718 0.00014 0.00002 0.01257 0.01504 0.08586 0.03162 –0.04710 0.05782

L-S 0.240 1.20 0.40 1.2 II 0.00052 0.00018 0.03990 0.00880 0.00102 0.00019 0.10475 0.01442 0.10640 0.03437 0.02488 0.06300

L-S 0.490 0.40 0.20 0.5 II 0.00135 0.00028 0.04360 0.01420 0.00278 0.00055 –0.15797 0.04068 0.36454 0.09070 –0.49562 0.11102
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L-S 0.490 0.40 0.31 0.8 II 0.00120 0.00025 0.04451 0.01302 0.00077 0.00018 –0.06708 0.02803 0.03721 0.01043 –0.18648 0.06396

L-S 0.490 0.78 0.20 0.8 II 0.00117 0.00022 0.03377 0.01372 0.00248 0.00049 –0.14053 0.04073 0.41395 0.09410 –0.40969 0.13896

L-S 0.490 0.78 0.31 0.5 II 0.00099 0.00019 0.03493 0.01235 0.00110 0.00022 –0.08612 0.03002 0.14386 0.03055 –0.34041 0.09820

L-S 0.490 0.78 0.31 0.8 II 0.00089 0.00017 0.03416 0.01160 0.00086 0.00019 –0.07107 0.02870 0.07912 0.01411 –0.26640 0.09479

L-S 0.490 0.78 0.31 1.2 II 0.00080 0.00015 0.03094 0.01110 0.00074 0.00017 –0.06302 0.02770 0.04094 0.00823 –0.22814 0.08364

L-S 0.490 0.78 0.40 0.8 II 0.00079 0.00015 0.03311 0.01078 0.00036 0.00007 –0.03279 0.02097 0.01401 0.00616 –0.11363 0.05826

L-S 0.490 1.20 0.31 0.8 II 0.00070 0.00011 0.02064 0.01086 0.00104 0.00021 –0.08065 0.02946 0.16133 0.03167 –0.32542 0.11326

L-S 0.490 1.20 0.40 1.2 II 0.00040 0.00007 0.01857 0.00806 0.00036 0.00008 –0.03942 0.02037 0.01696 0.00490 –0.15786 0.06594
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Table D.2. Comparison of model predicted maximum near-surface concentration,
C(X,0), and observed maximum C(X,0) from the Willis & Deardorff experiments for
dimensionless source heights of zs/h =0.067, 0.24 and 0.49. Results are shown from
simulations with the nonlinear-Gaussian (N-G) and linear-skewed (L-S) Langevin
equation models using reflection method I, II, and III, and a range of input values for the
fluid velocity skewness, S, the dimensionless fluid velocity variance, σw f

2 w*
2 , and the

dimensionless Lagrangian correlation time, τw* h .

Model
 

zs

h S
σw f

2

w*
2

τw*

h Refl.
Meth.

Max.
C(X,0)
predicted

Max.
C(X,0)
observed

X of max.
C(X,0)
predicted

X of max.
C(X,0)
observed

N-G 0.067 0.40 0.20 0.5 II 9.29080  7.40000 0.17500 0.12000

N-G 0.067 0.40 0.31 0.8 II 9.18560 7.40000 0.16000 0.12000

N-G 0.067 0.78 0.20 0.8 II 9.89380 7.40000 0.20000 0.12000

N-G 0.067 0.78 0.31 0.5 II 10.02140 7.40000 0.15000 0.12000

N-G 0.067 0.78 0.31 0.8 I 9.12720 7.40000 0.12000 0.12000

N-G 0.067 0.78 0.31 0.8 II 9.94640 7.40000 0.16000 0.12000

N-G 0.067 0.78 0.31 0.8 III 9.45460 7.40000 0.12000 0.12000

N-G 0.067 0.78 0.31 1.2 II 9.57060 7.40000 0.12000 0.12000

N-G 0.067 0.78 0.40 0.8 II 9.89060 7.40000 0.12000 0.12000

N-G 0.067 1.20 0.31 0.8 II 10.60440 7.40000 0.16000 0.12000

N-G 0.067 1.20 0.40 1.2 II 10.32020 7.40000 0.12000 0.12000

N-G 0.240 0.40  0.20 0.5 II 3.01700 3.00000 0.60000 0.50000

N-G 0.240 0.40 0.31 0.8 II 3.19140 3.00000 0.44000 0.50000

N-G 0.240 0.78 0.20 0.8 II 3.29760 3.00000 0.68000 0.50000

N-G 0.240 0.78 0.31 0.5 II 3.24420 3.00000 0.57500 0.50000

N-G 0.240 0.78 0.31 0.8 I 2.81420 3.00000 0.60000 0.50000

N-G 0.240 0.78 0.31 0.8 II 3.25980 3.00000 0.52000 0.50000

N-G 0.240 0.78 0.31 0.8 III 3.05180 3.00000 0.56000 0.50000
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N-G 0.240 0.78 0.31 1.2 II 3.23520 3.00000 0.48000 0.50000

N-G 0.240 0.78 0.40 0.8 II 3.27880 3.00000 0.44000 0.50000

N-G 0.240 1.20 0.31 0.8 II 3.38480 3.00000 0.64000 0.50000

N-G 0.240 1.20 0.40 1.2 II 3.26200 3.00000 0.54000 0.50000

N-G 0.490 0.40 0.20 0.5 II 1.37040 1.80000 1.37500 0.80367

N-G 0.490 0.40 0.31 0.8 II 1.52920 1.80000 0.96000 0.80367

N-G 0.490 0.78 0.20 0.8 II 1.58440 1.80000 1.68000 0.80367

N-G 0.490 0.78 0.31 0.5 II 1.52880 1.80000 1.40000 0.80367

N-G 0.490 0.78 0.31 0.8 I 1.47600 1.80000 1.36000 0.80367

N-G 0.490 0.78 0.31 0.8 II 1.63380 1.80000 1.24000 0.80367

N-G 0.490 0.78 0.31 0.8 III 1.53820 1.80000 1.16000 0.80367

N-G 0.490 0.78 0.31 1.2 II 1.61720 1.80000 1.14000 0.80367

N-G 0.490 0.78 0.40  0.8 II 1.59060 1.80000 1.00000 0.80367

N-G 0.490 1.20 0.31 0.8 II 1.73760 1.80000 1.48000 0.80367

N-G 0.490 1.20 0.40 1.2 II 1.67720 1.80000 1.20000 0.80367

L-S 0.067 0.40 0.20 0.5 II 8.51560 7.40000 0.17500 0.12000

L-S 0.067 0.40 0.31 0.8 II 8.64280 7.40000 0.16000 0.12000

L-S 0.067 0.78 0.20 0.8 II 9.23060 7.40000 0.20000 0.12000

L-S 0.067 0.78 0.31 0.5 II 9.10380 7.40000 0.15000 0.12000

L-S 0.067 0.78 0.31 0.8 I 8.14900 7.40000 0.12000 0.12000

L-S 0.067 0.78 0.31 0.8 II 9.30480 7.40000 0.16000 0.12000

L-S 0.067 0.78 0.31 0.8 III 8.56980 7.40000 0.12000 0.12000

L-S 0.067 0.78 0.31 1.2 II 8.99040 7.40000 0.18000 0.12000

L-S 0.067 0.78 0.40 0.8 II 9.10880 7.40000 0.12000 0.12000

L-S 0.067 1.20 0.31 0.8 II 9.61100 7.40000 0.16000 0.12000

L-S 0.067 1.20 0.40 1.2 II 9.30020 7.40000 0.12000 0.12000

L-S 0.240 0.40 0.20 0.5 II 2.70380 3.00000 0.55000 0.50000

L-S 0.240 0.40 0.31 0.8 II 3.01800 3.00000 0.40000 0.50000

L-S 0.240 0.78 0.20 0.8 II 3.06920 3.00000 0.56000 0.50000
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L-S 0.240 0.78 0.31 0.5 II 3.00460 3.00000 0.45000 0.50000

L-S 0.240 0.78 0.31 0.8 I 2.19920 3.00000 0.48000 0.50000

L-S 0.240 0.78 0.31 0.8 II 3.17260 3.00000 0.44000 0.50000

L-S 0.240 0.78 0.31 0.8 III 2.57500 3.00000 0.48000 0.50000

L-S 0.240 0.78 0.31 1.2 II 3.31160 3.00000 0.42000 0.50000

L-S 0.240 0.78 0.40 0.8 II 3.20020 3.00000  0.40000 0.50000

L-S 0.240 1.20 0.31 0.8 II 3.11460 3.00000 0.48000 0.50000

L-S 0.240 1.20 0.40 1.2 II 3.24040 3.00000 0.42000 0.50000

L-S 0.490 0.40 0.20 0.5 II 1.19340 1.80000 1.27500 0.80367

L-S 0.490 0.40 0.31 0.8 II 1.38500 1.80000 0.84000 0.80367

L-S 0.490 0.78 0.20 0.8 II 1.42860 1.80000 1.20000 0.80367

L-S 0.490 0.78 0.31 0.5 II 1.32600 1.80000 1.00000 0.80367

L-S 0.490 0.78 0.31 0.8 I 1.03740 1.80000 0.96000 0.80367

L-S 0.490 0.78 0.31 0.8 II 1.47280 1.80000 0.92000 0.80367

L-S 0.490 0.78 0.31 0.8 III 1.22160 1.80000 1.08000 0.80367

L-S 0.490 0.78 0.31 1.2 II 1.56160 1.80000 0.84000 0.80367

L-S 0.490 0.78 0.40 0.8 II 1.50560 1.80000 0.76000 0.80367

L-S 0.490 1.20 0.31 0.8 II 1.47920 1.80000 1.00000 0.80367

L-S 0.490 1.20 0.40 1.2 II 1.53880 1.80000 0.78000 0.80367
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